Aqui, nós apresentamos um protocolo para induzir e marcar a doença em um modelo xenogénica da doença do transplantar-contra-anfitrião (xenogvhd). o xenoGVHD fornece um modelo in vivo para estudar a imunossupressão de células T humanas. Adicionalmente, nós descrevemos como detectar pilhas de T humanas nos tecidos com PCR digital como uma ferramenta para quantificar o immunosuppression.
A doença aguda do enxerto contra o hospedeiro (DECH) é uma limitação significativa para pacientes que recebem transplante de células-tronco hematopoiéticas como terapia para deficiências hematológicas e malignidades. A DECH aguda ocorre quando as células T do doador reconhecem os tecidos hospedeiros como um antígeno estrangeiro e montam uma resposta imune ao hospedeiro. Os tratamentos atuais envolvem drogas imunossupressoras tóxicas que tornam os pacientes suscetíveis à infecção e recorrência. Assim, há uma pesquisa contínua para fornecer uma terapia aguda de GVHD que possa eficazmente alvejar pilhas de T do doador e reduzir efeitos laterais. Muito deste trabalho pré-clínico usa o modelo murino xenogênico GVHD (xenoGVHD) que permite o teste de terapias imunossupressoras em células humanas em vez de células murinas em um sistema in vivo. Este protocolo descreve como induzir xenoGVHD e como cego e padronizar a pontuação clínica para garantir resultados consistentes. Adicionalmente, este protocolo descreve como usar o PCR digital para detectar pilhas de T humanas em tecidos do rato, que podem subseqüentemente ser usados para quantificar a eficácia de terapias testadas. O modelo de xenoGVHD fornece não somente um modelo para testar terapias de GVHD mas toda a terapia que pode suprimir pilhas de T humanas, que poderiam então ser aplicadas a muitas doenças inflamatórios.
A transplantação hematopoietic allogeneic da pilha de haste (HSCT) transformou-se tratamento rotineiro para os pacientes que sofrem das malignidades hematológicas tais como a leucemia com prognóstico pobre. Uma complicação significativa do TCTH é A doença aguda do enxerto contra o hospedeiro (DECH). Um estudo 2012 relatou que a DECH aguda se desenvolveu em 39% dos pacientes com TCTH recebendo transplantes de doadores irmãos e 59% dos pacientes que receberam transplantes de doadores não relacionados1. A DECH aguda ocorre quando as células T derivadas de doadores atacam os órgãos do receptor. A única terapia bem-sucedida para a DECH é o tratamento com drogas altamente imunossupressoras2, que são altamente tóxicos e aumentam o risco de infecção e recorrência tumoral. Assim, apesar das melhorias que foram feitas na sobrevivência aguda do GVHD nos últimos anos3,4,5, há ainda uma necessidade crítica para terapias melhoradas do GVHD com toxicidade mínima que promovem a remissão a longo prazo.
O objetivo geral dos seguintes métodos é induzir e marcar GVHD xenogénica (xenogvhd). O modelo de xenoGVHD foi desenvolvido como uma ferramenta para induzir a DECH aguda com células humanas, em vez de células murinas, permitindo a tradução mais direta da pesquisa pré-clínica de GVHD para ensaios clínicos6. Este modelo envolve intravenosamente injetar células mononucleares do sangue periférico humano (PBMC) em camundongos Nod-scid Il-2rγnull (NSG) que são irradiados células. As células t humanas injetadas são ativadas por células apresentadoras de antígeno humano (APCs) apresentando antígeno murino e as células t ativadas migram para tecidos distantes, resultando em inflamação sistêmica e, finalmente, morte6,7, 8 . º , 9 anos de , 10. patologia da doença e progressão no modelo xenoGVHD imitar de perto a GVHD aguda humana. Especificamente, as células t humanas patogênicas são reativas às proteínas do complexo de histocompatibilidade Major murino (MHC), que é semelhante à aloreatividade da célula t na GVHD humana6,9. A principal vantagem do modelo xenoGVHD sobre o modelo de incompatibilidade de MHC do mouse, o outro modelo de GVHD amplamente utilizado, é que permite o teste de terapias em células humanas, em vez de células murinas. Isto permite o teste dos produtos que podem diretamente ser traduzidos à clínica sem nenhumas modificações porque são feitos para alvejar pilhas humanas. Recentemente, este modelo foi usado para testar um anticorpo humano de anti-Il-211, pilhas de T reguladoras Thymic humanas (tregs)12 e pilhas de haste mesenquimais humanas13 como tratamentos potenciais para o GVHD agudo. Em um contexto mais largo, este modelo pode ser usado como um ensaio in vivo da supressão para todo o tipo da droga ou da pilha que possa suprimir a atividade humana da pilha de T. Por exemplo, Stockis et al.14 utilizaram o modelo de xenoGVHD para estudar o efeito do bloqueio da integrina αVβ8 na atividade supressora de TREG in vivo. Assim, o modelo de xenoGVHD pode fornecer a introspecção no mecanismo de toda a terapia que alvejam pilhas de T em um ajuste in vivo.
Um método adicional descrito neste protocolo é como detectar pilhas de T humanas em tecidos do rato usando a reacção em cadeia digital do polymerase (dPCR). O objetivo deste método é oferecer uma ferramenta para quantificar a migração e proliferação de células T em tecidos-alvo, que medem a eficácia das terapias imunossupressoras sendo testadas neste modelo. a dPCR é um método relativamente novo para quantificação de ácidos nucleicos15. Momentaneamente, a mistura da reação do PCR é dividida nas divisórias que contêm números pequenos da seqüência do alvo ou do nenhum alvo de todo. A sequência alvo é então amplificada e detectada usando corantes de intercalação de DNA ou sondas fluorescentes específicas do alvo. o dpcr quantifica o número de cópias da sequência de alvos com base na fração de partições positivas e nas estatísticas de Poisson15,16. A detecção de células T com dPCR requer muito menos tecido em comparação com outros métodos alternativos, incluindo citometria de fluxo e histologia, podendo ser realizada em tecido congelado ou fixo. dPCR não requer uma curva padrão para determinar os números de cópia, nem são réplicas técnicas necessárias. Isto reduz a quantidade de reagente e o ADN do molde necessários para dPCR comparado ao PCR quantitativo tradicional (qPCR)16. Particionar a reação de PCR em subreações na dPCR concentra efetivamente alvos17. Assim, o dPCR é primeiramente uma ferramenta para a deteção de alvos raros em uma grande quantidade de ADN do não-alvo. Por exemplo, o dPCR está sendo usado para detectar a contaminação bacteriana no leite18, identificar mutações raras no gene19do receptor do estrogen, e detectar o ADN de circulação do tumor no sangue dos pacientes20. Neste protocolo, o dPCR sere como uma ferramenta eficiente para detectar e quantificar pilhas de T humanas nos tecidos dos ratos com xenoGVHD.
A progressão da doença é geralmente consistente no modelo xenoGVHD, mesmo com a injeção de PBMC de diferentes doadores, de modo que vários experimentos podem ser combinados. As etapas chaves exigidas para manter esta consistência são técnica apropriada da injeção de i.v., cegando e marcando consistente. Um estudo de Nervi et al.25 demonstrou que, comparado à injeção venosa da veia cauda, as injeções retroorbitais de PBMC resultaram em Engraftment mais consistente e em DECH mais gra…
The authors have nothing to disclose.
Nós gostaríamos de reconhecer o laboratório de Lane Christenson para fornecer a máquina digital do PCR usada nestas experiências e para o apoio técnico fornecido. Também gostaríamos de agradecer ao Dr. Thomas Yankee por sua orientação e mentoria. Estes estudos foram apoiados pela Fundação família Tripp.
1.5 mL eppendorf tubes | Fisher | 05-408-129 | |
10 mL serological pipet | VWR International | 89130-898 | |
10mL BD Vacutainers – Green capped with Sodium Heparin | Becton Dickinson | 366480 | |
250 µL Ranin pipette tips | Rainin | 17001118 | Do not use other pipettes or pipet tips for droplet generation |
50 mL conical tube | VWR International | 89039-656 | |
96-Well ddPCR plate | Bio-Rad | 12001925 | |
ACK (Ammonium-Chloride-Potassium) Lysing Buffer | Lonza | 10-548E | Optional |
Alcohol Wipes | Fisher Scientific | 6818 | |
Anesthesia Chamber | World Precision Instruments | EZ-178 | Provided by animal facility |
Anesthesia Machine | Parkland Scientific | PM1002 | Provided by animal facility |
BD Vacutainer Safety-Lok Blood Collection Set | Becton Dickinson | 367281 | |
DG8 Cartridges and Gaskets for QX100/QX200 Droplet Generator | Bio-Rad | 1864007 | |
DNAse and RNAse free Molecular Grade H2O | Life Technologies | 1811318 | |
Ethyl alcohol, Pure,200 proof, for molecular biology | Sigma-Aldrich | E7023-500ML | |
Fetal Bovine Serum | Atlanta Biologicals | S11150 | |
Ficoll | Fisher Scientific | 45001750 | |
Insulin Syringe | Fisher Scientific | 329424 | |
Isoflurane | Sigma-Aldrich | CDS019936 | Provided by animal facility |
Liquid nitrogen | N/A | N/A | |
Mouse Irradiator Pie Cage | Braintree Scientific, Inc. | MPC 1 | Holds up to 11 mice |
Nexcare Gentle Paper Tape (a.k.a. 3M Micropore Surgical Tape / 3/4") | Fisher Scientific | 19-027-761 | |
P1000 pipetman | MidSci | A-1000 | |
P200 pipetman | MidSci | A-200 | |
Pierceable Foil Heat Seal | Bio-Rad | 1814040 | |
Pipetaid Gilson Macroman | Fisher Scientific | F110756 | |
Pipet-Lite Multi Pipette L8-200XLS+ | Rainin | 17013805 | Do not use other pipettes or pipet tips for droplet generation |
Qiagen DNeasy Blood and Tissue Kit | Qiagen | 69506 | |
qPCR plates | VWR International | 89218-292 | |
QX200 Droplet Digital PCR System | Bio-Rad | 12001925 | Includes droplet generator, droplet reader, laptop computer, software, associated component consumables, for EvaGreen or probe-based digital PCR applications |
QX200 Droplet Generation Oil for EvaGreen | Bio-Rad | 1864006 | |
QX200 ddPCR EvaGreen Supermix | Bio-Rad | 1864033 | |
RNase and DNase-free plate seal | Thermo Scientific | 12565491 | |
RPMI Advanced 1640 | Life Technologies | 12633012 | |
Sterile Gauze Pads (2" x 2", 12-Ply) | Fisher Scientific | 67522 | |
Sterile Phosphate Buffered Saline | Fisher Scientific | 21040CV | |
Sterile reservoir | VWR International | 89094-662 | |
Surgial Scissors | Kent Scientific | INS600393-4 | |
Surgical Forceps | Kent Scientific | INS650914-4 |