Descrevemos abordagens para a manipulação de genes no sistema modelo evolucionista Astyanax mexicanus. São descritas três técnicas diferentes: transgênese mediada por Tol2, alvo de manipulação do genoma usando CRISPR/Cas9 e nocaute de expressão usando morpholinos. Essas ferramentas devem facilitar a investigação direta de genes subjacentes a variação entre as formas de superfície – e caverna-moradia.
Caverna de animais fornecem um sistema convincente para investigar os mecanismos evolucionários e bases genéticas subjacentes alterações em numerosos traços complexos, incluindo a degeneração do olho, albinismo, perda do sono, hiperfagia e processamento sensorial. Espécie de cavefish de todo o mundo exibe uma evolução convergente de características morfológicas e comportamentais devido a pressões ambientais compartilhadas entre sistemas diferentes de caverna. Caverna de diversas espécies foram estudadas na configuração de laboratório. O tetra mexicano, Astyanax mexicanus, com formas de videntes e cegas, forneceu insights exclusivas em processos biológicos e moleculares subjacentes a evolução dos traços complexos e é bem preparado como um sistema modelo emergente. Enquanto genes candidatos regulamenta a evolução de diversos processos biológicos foram identificados na. mexicanus, a capacidade de validar um papel para genes individuais tem sido limitada. A aplicação de transgênese e gene-edição tecnologia tem o potencial para superar este obstáculo significativo e investigar os mecanismos subjacentes a evolução dos traços complexos. Aqui, descrevemos uma metodologia diferente para manipular a expressão gênica na . mexicanus. Abordagens incluem o uso de morpholinos, Tol2 transgênese, e sistemas de edição de gene, comumente usados em zebrafish e outros peixes de modelos, para manipular a função do gene na . mexicanus. Estes protocolos incluem descrições detalhadas dos procedimentos de reprodução programada, a coleção de ovos fertilizados, injeções e a seleção de animais geneticamente modificados. Permitirão que estas abordagens metodológicas para a investigação dos mecanismos genéticos e neurais subjacentes a evolução dos diversos traços na . mexicanus.
Desde a Origem das espéciesde Darwin1, cientistas ganharam profundos insights sobre como traços são dados forma evolutivamente em resposta a pressões ecológicas e ambientais definidas, graças a caverna organismos2. O tetra mexicano, a. mexicanus, consiste em olhos populações ‘superfície’ ancestrais que habitam rios em todo o México e sul do Texas e pelo menos 29 populações geograficamente isoladas da caverna derivada morfos que habitam a Sierra del Abra e outras áreas do México nordeste3. Foram identificados vários traços associada a caverna em a. mexicanus, incluindo o consumo de oxigênio alterados, despigmentação, perda de olhos e alterada a alimentação e forrageamento comportamento4,5,6, 7,8,9. A. mexicanus apresenta um poderoso modelo para investigar mecanismos de evolução convergente, devido a uma história evolutiva bem definida, uma caracterização detalhada do ambiente ecológico e a presença de forma independente evoluiu caverna populações de10,11. Muitos dos traços que estão presentes no cavefish, incluindo perda de olhos, dormir perda, aumentaram a alimentação, perda de escolaridade, reduziram a agressão e reduziram respostas de estresse, evoluíram várias vezes através de origens independentes, muitas vezes utilizando derivados de caverna diferentes vias genéticas entre cavernas8,12,13,14,15. Esta evolução é um aspecto poderoso do sistema da . mexicanus e pode fornecer insights sobre a questão mais geral de sistemas como a genéticas podem ser perturbado para gerar fenótipos similares repetida.
Enquanto a aplicação da tecnologia genética para a investigação mecanicista da função dos genes tem sido limitada em muitas espécies de peixes (incluindo a. mexicanus), avanços recentes no zebrafish fornecem uma base para o desenvolvimento de tecnologia genética em peixes 16,17,18,19,20. Inúmeras ferramentas são amplamente utilizadas no zebrafish para manipular a expressão gênica, e a implementação desses procedimentos há muito tempo tem sido padronizado. Por exemplo, a injeção de Morpholinos oligos (MOs) na fase de célula única seletivamente bloqueia RNA e impede que a tradução para uma janela temporal breve durante desenvolvimento21,22. Além disso, gene-edição abordagens, tais como agrupados regularmente intercaladas curtas palíndromos repetições (CRISPR) / CRISPR-associados proteína 9 (Cas9) e nuclease efetoras como ativador de transcrição (TALEN), que permite a geração de exclusões definidas ou, em alguns casos, inserções através de uma recombinação em genomas19,20,23,24. Transgênese é usada para manipular a expressão de gene estável ou função de uma maneira específica do tipo de célula. O sistema Tol2 é utilizado com eficácia para gerar animais transgénicos por coinjecting transposase mRNA com um plasmídeo de DNA Tol2 contendo um transgene25,26. O sistema Tol2 utiliza o transposase Tol2 de medaka para gerar inserções germline estável de construct17 transgénicos. Gerar Tol2 transgênicos envolve coinjecting um plasmídeo contendo um transgene ladeado por sites de integração Tol2 e mRNA para Tol2 transposase17. Este sistema tem sido usado para gerar uma matriz de linhas transgénicas no zebrafish e seu uso se expandiu recentemente para sistemas modelo emergente adicionais, incluindo ciclideos, killies, o pauzinho e, mais recentemente, o mexicano cavefish27, 28,29,30.
Enquanto o cavefish é um fascinante sistema biológico para elucidar os mecanismos da evolução do traço, sua capacidade plena como um modelo evolucionista não tem sido totalmente aproveitada. Isto tem sido parcialmente devido a uma incapacidade de manipular genética e celular funcionar diretamente31. Genes candidatos regulação complexos traços foram identificados usando estudos de loci (QTL) característica quantitativa, mas a validação destes genes candidatos tem sido difícil32,33,34. Recentemente, nocaute transiente usando morpholinos, gene edição usando sistemas CRISPR e TALEN e o uso do Tol2-transgênese mediada têm sido usados para investigar a base genética subjacente a um número de traços,35,36,37 ,38. A implementação e padronização destas técnicas permitirá manipulações que interrogar os fundamentos moleculares e neurais de traços biológicos, incluindo a manipulação da função do gene, a rotulagem de populações de células definidos, e a expressão de repórteres funcionais. Considerando que o sucesso da implementação destas ferramentas genéticas para manipular o gene ou função celular tem sido demonstrada em sistemas modelo emergente, protocolos detalhados ainda são carentes da . mexicanus.
A. mexicanus fornecem a introspecção crítica dos mecanismos da evolução em resposta a um ambiente em mudança e a oportunidade de identificar novos genes regulando diversos traços do presente. Um número de fatores sugere que a. mexicanus é um modelo extremamente tractable para aplicar ferramentas genómicas estabelecidas atualmente disponíveis em modelos genéticos estabelecidos, incluindo a capacidade de facilmente manter peixes nos laboratórios, tamanho grande ninhado, transparência, um genoma sequenciado e ensaios comportamentais definidos39. Aqui, descrevemos uma metodologia para o uso de morpholinos, transgênese e gene edição na superfície e caverna populações da . mexicanus. A aplicação mais ampla dessas ferramentas na . mexicanus permitirá uma investigação mecanicista sobre os processos moleculares subjacentes a evolução das diferenças de desenvolvimento, fisiológicas e comportamentais entre cavefish e peixes de superfície.
Aqui, nós fornecemos uma metodologia para manipular a função dos genes usando morpholinos, gene CRISPR/Cas9 edição e metodologia de transgênese. A riqueza da tecnologia genética e a otimização desses sistemas no zebrafish provavelmente permitirá a transferência dessas ferramentas para a. mexicanus com facilidade52. Descobertas recentes têm usado essas abordagens na . mexicanus, mas eles permanecem subutilizados na investigação de diversas características morfológi…
The authors have nothing to disclose.
Os autores agradecer Sunishka Thakur pela sua assistência na genotipagem e imagem os peixes mutantes oca2 , representados na Figura 2. Este trabalho foi financiado pela National Science Foundation (NSF) prêmio 1656574 para A.C.K., prêmio NSF 1754321 a J.K. e A.C.K. e prêmio do National Institutes of Health (NIH) R21NS105071 para A.C.K. e E.R.D.
Fish breeding & egg supplies | |||
Fine mesh fish net | Penn Plax | BN4 | |
Fish tank heater | Aqueon | 100106108 | |
Egg traps | Custom made | NA | Design and create plastic grate to place at bottom of tank to protect eggs |
Glass pipettes | Fisher Scientific | 13-678-20C | |
Pipette bulbs | Fisher Scientific | 03-448-21 | |
Agarose | Fisher Scientific | BP160-500 | |
Egg molds | Adaptive Science Tools | TU-1 | |
Morpholino supplies | |||
Control Morpholino | Gene Tools, LLC | Standard control olio | |
Custom Morpholino | Gene Tools, LLC | NA | |
Phenol Red | Sigma Aldrich | P0290-100ML | |
CRISPR supplies | |||
Cas9 Plasmid | AddGene | 46757 | |
GoTaq DNA Polymerase | Promega | M3001 | |
KOD Hot Start Taq | EMD Millipore | 71-842-3 | |
Primers | Integrated DNA Technologies | Custom | |
T7 Megascript Kit | Ambion/Thermofisher | AM1333 | |
miRNeasy Kit | Qiagen | 217004 | |
mMessage mMachine T3 kit | Ambion/Thermofisher | AM1348 | |
MinElute Kit | Qiagen | 28204 | |
Tol2 transgenesis supplies | |||
pCS-zT2TP plasmid | Kawakami et al., 2004 | Request from senior author | |
CutSmart Buffer | New England Biolabs | B7204 | |
NotI-HF Restriction Enzyme | New England Biolabs | R3189 | |
PCR purification Kit | Qiagen | 28104 | |
SP6 mMessenger Kit | Ambion/Thermofisher | AM1340 | |
Microinjection supplies | |||
Glass Capillary Tubes | Sutter Instruments | BF100-58-10 | |
Pipette puller | Sutter Instruments | P-97 | |
Picoinjector | Warner Instruments | PLI-100A | |
Micromanipulator | World Precision Instruments | M3301R | |
Micromanipulator Stand | World Precision Instruments | M10 | |
Micmanipulator Base | World Precision Instruments | Steel Plate Base, 10 lbs |