Les auteurs décrivent les approches pour la manipulation des gènes dans le système de modèle évolutionniste Astyanax mexicanus. Trois techniques différentes sont décrites : Tol2 médiée par transgénèse, manipulation ciblée du génome à l’aide de CRISPR/Cas9 et précipitation d’expression utilisant les morpholinos. Ces outils devraient faciliter l’enquête directe des gènes qui sous-tendent la variation entre les formes de surface – et cavernicoles.
Animaux de la grotte d’un système convaincant pour étudier les mécanismes évolutifs et bases génétiques des changements dans nombreux traits complexes, y compris la dégénérescence de l’oeil, l’albinisme, perte de sommeil, une hyperphagie et traitement sensoriel. Espèce d’agassizii de partout dans le monde affiche une évolution convergente des caractéristiques morphologiques et comportementales en raison des pressions environnementales partagées entre systèmes de grottes différentes. Grotte de diverses espèces ont été étudiés en laboratoire. Le tétra aveugle, Astyanax mexicanus, avec des formes voyants et aveugles, a fourni un aperçu unique des processus biologiques et moléculaires qui sous-tendent l’évolution des caractères complexes et est bien placée comme un système modèle émergent. Alors que les gènes candidats régissant l’évolution des divers processus biologiques ont été identifiés chez a. mexicanus, la capacité de valider un rôle des gènes individuels a été limitée. L’application de transgenèse et de la technologie de modification génétique a le potentiel pour surmonter cet obstacle significatif et d’étudier les mécanismes qui sous-tendent l’évolution des traits complexes. Nous décrivons ici une méthode différente pour manipuler l’expression des gènes chez a. mexicanus. Approches incluent l’utilisation de morpholinos, Tol2 transgénèse, et systèmes d’édition de gène, couramment utilisés en poisson-zèbre et autres poissons des modèles, pour manipuler la fonction du gène chez a. mexicanus. Ces protocoles incluent des descriptions détaillées des procédures de reproduction temporisée, la collecte des ovocytes fécondés, des injections et la sélection des animaux génétiquement modifiés. Permettront à ces approches méthodologiques pour l’étude des mécanismes génétiques et neuronales qui sous-tendent l’évolution des divers traits chez a. mexicanus.
Depuis l’ Origine des espècesde Darwin1scientifiques ont gagné profonde mieux comprendre comment des traits sont en forme évolutives en réponse à des pressions environnementales et écologiques définies, grâce à la grotte organismes2. Le tétra aveugle, a. mexicanus, se compose d’eyed populations « surfaces » ancestrales qui peuplent les rivières dans tout le Mexique et le sud du Texas et d’au moins 29 populations géographiquement isolées des formes dérivées de la grotte qui habitent la Sierra del Abra et d’autres régions du Nord-est du Mexique3. Un certain nombre de traits associés à la grotte ont été identifié chez a. mexicanus, y compris la consommation d’oxygène altérée, dépigmentation, perte des yeux et changé d’alimentation et d’alimentation comportement4,5,6, 7,8,9. A. mexicanus présente un modèle puissant pour étudier les mécanismes de l’évolution convergente en raison de la présence d’une histoire évolutive bien définie et une caractérisation détaillée de l’environnement écologique indépendamment évolué grotte les populations de10,11. Bon nombre des traits dérivés de grotte qui sont présents dans spelaea, y compris la perte de l’oeil, perte de sommeil, a augmenté l’alimentation, perte de la scolarité, réduit l’agression et réduit les réactions au stress, ont évolué plusieurs fois à travers les origines indépendantes, souvent en utilisant différentes voies génétiques entre grottes8,12,13,14,15. Cette scène reproduit evolution est un aspect puissant du système a. mexicanus et peut fournir la perspicacité dans la question plus générale des systèmes comment génétiques peut être perturbée pour produire des phénotypes semblables.
Alors que l’application de la technologie génétique pour l’étude mécanistique de la fonction du gène a été limitée dans de nombreuses espèces de poissons (y compris a. mexicanus), les progrès récents dans le poisson-zèbre fournissent une base pour le développement de la technologie génétique chez les poissons 16,17,18,19,20. Nombreux outils sont largement utilisés chez le poisson zèbre pour manipuler l’expression des gènes, et la mise en œuvre de ces procédures ont longtemps été normalisés. Par exemple, l’injection de morpholino oligos (MOs) au stade unicellulaire sélectivement bloque RNA et empêche la traduction pour une brève fenêtre temporelle pendant développement21,22. En outre, édition de gène approches, telles que groupés régulièrement entrecoupées courtes répétitions palindromiques (CRISPR) / CRISPR-associated protein 9 (Cas9) et nucléase effecteur comme activateur de transcription (TALEN), permettent la génération de destructions définies ou, dans certains cas, insertions par une recombinaison dans les génomes19,20,23,24. Transgénèse est utilisé pour manipuler l’expression génétique stable ou la fonction d’une manière spécifique de type cellulaire. Le système Tol2 est utilisé efficacement pour produire des animaux transgéniques par coinjecting transposase ARNm avec un plasmide d’ADN Tol2 contenant un transgène25,26. Le système Tol2 utilise la transposase Tol2 des médakas pour générer des insertions de germline stable de construct17 transgénique. Génération Tol2 transgénèse consiste à coinjecting un plasmide contenant un transgène flanqué d’ARNm et des sites d’intégration Tol2 pour Tol2 transposase17. Ce système a été utilisé pour générer un tableau de lignées transgéniques chez le poisson zèbre et son utilisation a récemment élargi à supplémentaire modèle émergent, y compris des cichlidés, barrés, l’épinoche et, plus récemment, le mexicain agassizii27, 28,29,30.
Alors que le poulsoni est un système biologique fascinant pour élucider des mécanismes de l’évolution du trait, sa pleine capacité comme un modèle évolutionniste n’a pas été pleinement armée. Ceci a été partiellement due à une incapacité à manipuler génétiques et cellulaires fonctionnent directement31. Traits complexes de régulation des gènes candidats ont été identifiés à l’aide des études quantitative trait loci (QTL), mais la validation de ces gènes candidats a été difficile32,33,34. Récemment, knockdown transitoire à l’aide de morpholinos, gène d’édition à l’aide de systèmes CRISPR et TALEN et l’utilisation de Tol2-médiée par transgénèse ont été utilisés pour étudier le fondement génétique qui sous-tendent un certain nombre de traits,35,36,37 ,38. La mise en œuvre et la normalisation de ces techniques permettront de manipulations qui interrogent les bases neurales et moléculaires des traits biologiques, y compris la manipulation de la fonction du gène, l’étiquetage des populations de cellules déterminées, et l’expression de reporters fonctionnelles. Considérant que la mise en œuvre réussie de ces outils génétiques pour manipuler les gènes ou fonction cellulaire a été démontrée dans des systèmes modèles émergents, les protocoles détaillés font encore défaut dans a. mexicanus.
A. mexicanus fournissent la perspicacité critique dans les mécanismes de l’évolution en réponse à un environnement changeant et présenter l’occasion d’identifier de nouveaux gènes régissant les divers traits. Un certain nombre de facteurs suggère qu’a. mexicanus est un modèle extrêmement souple pour l’application des outils génomiques établis actuellement disponibles dans les modèles génétiques établis, y compris la capacité de maintenir facilement les poissons dans les laboratoires de grande taille de la couvée, transparence, un génome séquencé et analyses comportementales défini39. Nous décrivons ici une méthodologie pour l’utilisation des morpholinos, transgénèse et l’édition de gène chez des populations de surface et de la grotte d’a. mexicanus. L’application plus large de ces outils chez a. mexicanus permettra une enquête mécaniste sur les mécanismes moléculaires qui sous-tendent l’évolution des différences de développement, physiologiques et comportementales entre agassizii et poissons de surface.
Ici, nous avons fourni une méthodologie permettant de manipuler la fonction du gène en utilisant les morpholinos, gène CRISPR/Cas9 édition et méthodologie de la transgénèse. La richesse des technologies génétiques et l’optimisation de ces systèmes chez le poisson zèbre permettra probablement pour le transfert de ces outils dans a. mexicanus avec facilité,52. Des découvertes récentes ont utilisé ces approches dans a. mexicanus, mais elles restent sous-utilisées d…
The authors have nothing to disclose.
Les auteurs remercient Sunishka Thakur pour son aide dans le génotypage et imagerie le poisson mutant oca2 illustrée au tableau 2. Ce travail a été soutenu par la National Science Foundation (NSF) prix 1656574 à A.C.K., award NSF 1754321 J.K. et A.C.K. et prix National Institutes of Health (NIH) R21NS105071 A.C.K. et E.R.D.
Fish breeding & egg supplies | |||
Fine mesh fish net | Penn Plax | BN4 | |
Fish tank heater | Aqueon | 100106108 | |
Egg traps | Custom made | NA | Design and create plastic grate to place at bottom of tank to protect eggs |
Glass pipettes | Fisher Scientific | 13-678-20C | |
Pipette bulbs | Fisher Scientific | 03-448-21 | |
Agarose | Fisher Scientific | BP160-500 | |
Egg molds | Adaptive Science Tools | TU-1 | |
Morpholino supplies | |||
Control Morpholino | Gene Tools, LLC | Standard control olio | |
Custom Morpholino | Gene Tools, LLC | NA | |
Phenol Red | Sigma Aldrich | P0290-100ML | |
CRISPR supplies | |||
Cas9 Plasmid | AddGene | 46757 | |
GoTaq DNA Polymerase | Promega | M3001 | |
KOD Hot Start Taq | EMD Millipore | 71-842-3 | |
Primers | Integrated DNA Technologies | Custom | |
T7 Megascript Kit | Ambion/Thermofisher | AM1333 | |
miRNeasy Kit | Qiagen | 217004 | |
mMessage mMachine T3 kit | Ambion/Thermofisher | AM1348 | |
MinElute Kit | Qiagen | 28204 | |
Tol2 transgenesis supplies | |||
pCS-zT2TP plasmid | Kawakami et al., 2004 | Request from senior author | |
CutSmart Buffer | New England Biolabs | B7204 | |
NotI-HF Restriction Enzyme | New England Biolabs | R3189 | |
PCR purification Kit | Qiagen | 28104 | |
SP6 mMessenger Kit | Ambion/Thermofisher | AM1340 | |
Microinjection supplies | |||
Glass Capillary Tubes | Sutter Instruments | BF100-58-10 | |
Pipette puller | Sutter Instruments | P-97 | |
Picoinjector | Warner Instruments | PLI-100A | |
Micromanipulator | World Precision Instruments | M3301R | |
Micromanipulator Stand | World Precision Instruments | M10 | |
Micmanipulator Base | World Precision Instruments | Steel Plate Base, 10 lbs |