Summary

זיהוי סמני שטח תא של גזע עצבי ראשוני ובתאי מחולל מטבולית על ידי תיוג מטבולי של סילוגליקן

Published: September 07, 2019
doi:

Summary

מוצג כאן הוא פרוטוקול המשלב במערכת התרבותית העצבית-אנדותל ושיתוף תרבות מטבולית והתאגדות המטבולית של sialoglycan עם קבוצות פונקציונליות bioorthogonal כדי להרחיב את גזע הגוף העצבי ואת התאים מחולל מותג התווית שלהם סיליגליקורופנס להדמיה או ניתוח המסה-ספקטרומטריה של סמני שטח התא.

Abstract

תאי גזע ומחולל שדים עצביים הם הבסיס התאי למבנים ולתפקודים המורכבים של המוח. הם ממוקמים נישות מיוחדות ב vivo והוא יכול להיות מבודד ומורחב בתוך מבחנה, משמש כמשאב חשוב עבור השתלת תאים כדי לתקן את הנזק המוחי. עם זאת, NSPCs הם הטרוגנית ולא מוגדר באופן ברור ברמה המולקולרית או מטוהרים בשל חוסר סמנים משטח תא ספציפי. הפרוטוקול המוצג, אשר דווח בעבר, משלבת מערכת משותפת עצבית-שיתוף התרבות עם שיטת התיוג המטבולית, כדי לזהות את המשטח הפנימי של NSPCs הראשי. מערכת התרבות שיתוף הפעולה NSPC-אנדותל מאפשרת חידוש עצמי והתרחבות של NSPCs הראשי בתוך מבחנה, הפקת מספר מספיק של nspcs. סיאלוגליקנים בתרבית nspcs מסומנים באמצעות כתבת מטבולית בלתי טבעית של חומצה סילית עם קבוצות פונקציונליות ביואורתוגונאליות. על ידי השוואת שיתוף הפעולה העצמי מחדש NSPCs התרחב בתרבות האנדותל עם תרבות עצבית מבדילים, אנו מזהים רשימה של חלבונים ממברנה כי הם מועשרים NSPCs. בפירוט, הפרוטוקול כולל: 1) הגדרת תרבות שיתוף NSPC-אנדותל ו-NSPC תרבות הבחנה; 2) תיוג עם אזידוסוכר לפי-או-acetylated N-azidoacetylmannosamine (Ac4mannaz); ו-3) ביוטין ליצירת שינויים בסיקלוגליל לדימות לאחר קיבוע של תרבות עצבית או חילוץ חלבונים מהתרבות העצבית לניתוח הספקטרומטר ההמוני. לאחר מכן, מועמדים לסמן משטח NSPC מועשר נבחרו על ידי ניתוח השוואתי של נתונים ספקטרומטר המוני משני NSPC המורחבת ותרבויות עצביות הבדיל. פרוטוקול זה רגיש מאוד לזיהוי חלבונים ממברנות של שפע נמוך בחומרי ההתחלה, והוא יכול להיות מיושם על גילוי סמן במערכות אחרות עם שינויים מתאימים

Introduction

תאי גזע עצביים מוגדרים כאוכלוסיית תאים רב-עוצמה אשר ניתן לחדש את עצמו כדי לשמור על תא גזע הבריכה להבדיל לנוירונים ו glia. הם סוגי התא העיקריים במערכת העצבים ועשויים להציע פוטנציאל תרפויטי גדול ברפואת ההתחדשות באמצעות השתלת תאים לתוך המוח החולני והפצוע1,2. כמו התקדמות הפיתוח, האוכלוסיה הגזע העצבי הופך הטרודוגני3,4, ואת החלק של תאי גזע עצביים במוח בהדרגה יורדת5. באופן כללי, תאים גזע עובריים ותאים אחרים העצביים הנוירוני, המכונה בצורה קולקטיבית בתאי גזע ומחולל קדמון (NSPCs), ממוקמים באזורים נבטי, אזור חדרית, ואת אזור subventricular בעכברים6. במוח העובריים, תאי גזע עצביים ליצור נוירונים ישירות או בעקיפין באמצעות תאים ביניים מחולל (ipcs), ובמינים מסוימים דרך אזור subventricular החיצוני ושלתי (orgs)7,8. החתימה המולקולרית הספציפית, המבנה, המיקום בנישה תא הגזע, ופוטנציאל הבידול כולם קובעים את התפקיד של כל תת-סוג באורגנוגנזה ויישומים קליניים9. עם זאת, הסמנים הזמינים כרגע תא אינו יכול להפלות באופן חד-משמעי ולטהר סוגים שונים של NSPCs, הגבלת ההבנה והניצול של סוגי משנה אלה.

הזיהוי של סמני פני שטח NSPCs הראשי מוגבל על-ידי שלושה מכשולים עיקריים. הראשון הוא מספר התאים המוגבלים של NSPCs ברקמה, מה שמקשה על הכנת דגימות חלבון פני השטח של התא עבור ניתוח משותף של ספקטרומטר מסה. המגבלה השנייה היא הקושי בהפקת תת תאים טהורים ליצירת תת-סוג של נתוני חלבון ממברנה ספציפיים. לבסוף, האתגר השלישי הוא היחס הנמוך של חלבונים משטח התא בחלבונים תא שלם, אשר הסלים הרגישות שלהם לזיהוי על ידי ניתוח ספקטרומטר המסה.

כדי להתגבר על בעיות אלה, פיתחנו גישה chemoproteomic באופן סלקטיבי להעשיר ולזהות חלבונים פני השטח של התאים NSPCs הראשי על ידי metabolically תיוג sialoגליקורופנים10. כדי ליצור מספר מספיק של NSPCs, ניצלנו פרוטוקול מבוסס להרחיב ולתחזק NSPCs העיקרי במצבים מובחן ב מבחנה, על ידי co-culturing NSPCs עם המוח העכבר שורות התאים באמצעות תמיכה חדיר הוספת מטריצה (למשל, transwell) מערכת11. לעומת זאת, NPSCs תרבותי לבדו ללא תאים אנדותל ליצור הבדיל צאצאי11,12. כך, דגימות חלבונים משתי מערכות התרבות האלה ניתן לנתח באופן מקרי כדי לזהות חלבונים, כי הם מבוטא באופן מהותי NSPCs והבדיל נוירונים. כמו רוב חלבונים פני השטח משתנים על ידי חומצה סילית13, חומצה הסילית טבעי אנלוגי מקודמן N-azidoacetylmannosamine-tetraacylated (Ac4mannaz) שימש לחטוף את השביל הפנימי מטבולית כך אנדוגניים, לאחרונה מסונתז הם מתויגים עם קבוצות azido, יצירת ידית כימית14. באמצעות azido-אלאלקין-מתווך תגובות bioorthogonal, אשר המשלים ביוטין כדי sialoglycans, תא משטח חלבונים יכול להיות דמיינו ומועשר עבור זיהוי פרוטמית באמצעות מstreptavidin מצמידים fluorophore או מטריקס14.

כאן, אנו מבצעים צביעת של SDS-דף ניתוח ג’ל של פני השטח של sialoגליקורופאז מ NSPCs התרחב בתרבות שיתוף הפעולה של אנדותל ומבדילים תאים במערכת לא שיתוף תרבות. כמו כן אנו מטהר באופן סלקטיבי את המשטח בשתי מערכות התרבות של השוואה פרוטמית. הפרוטוקול שלנו, לעומת המסורתית צנטריפוגה מבוסס משטח תא פרוטוקולים טיהור15, מגביר את היעילות החילוץ על ידי הפחתת פני השטח החילוץ הליכי הפקת באמצעות תג מסוים בניינים ואהדה טיהור. בינתיים, זה מגביר את טוהר החילוץ של חלבונים משטח התא בהתבסס על ההנחה כי הסיללציה מתרחשת בעיקר על פני השטח של התאים חלבונים. למרות שגורמי האנדותל אינם יכולים לחסום לחלוטין את הבידול של nspcs מורחב, המחקר השוואתי בין תרבות שותפה ותרבות מובחנת מספק שיטה נוחה כדי לאתר את הזהות המועשרת של תאי גזע מועשר ללא צורך ל לנתח חלבונים מ NPCs מטוהרים על ידי FACS16. אנו מאמינים גישה זו ניתן להחיל על מחקרים של חלבונים פני השטח במערכות אחרות עם השינויים המתאימים.

Protocol

כל הפרוטוקולים בעלי חיים המשמשים במחקר זה אושרו על ידי IACUC (הוועדה לטיפול בבעלי חיים מוסדיים) של אוניברסיטת Tsinghua והופיע בהתאם להנחיות של IACUC. מתקן חיות המעבדה באוניברסיטת Tsinghua כבר מוכר על ידי AAALAC (האגודה להערכת והסמכה של מעבדה בעלי חיים הבינלאומי טיפול). עבור ההיערכות של עוברים, באמצע היום ש…

Representative Results

ההליך כולו להרחבת מבחנה ותיוג מטבולית של NSPCs העובריים הראשי לוקח 6 ימים (איור 1A). איכות של קו התא BEND3 ו NSPCs הראשי המבודד הטרי הם המפתח לניסוי מוצלח. תאים BEND3 הם המקור של גורמים מסיסים המעוררים חידוש עצמי והתפשטות NSPCs. יש להבטיח כי התאים BEND3 חופשיים של כל זיהום ו?…

Discussion

סמני פני השטח משמשים בדרך כלל לתוויות ולטיהור סוגי תאים ספציפיים במבחנה ובvivo17,18. גילוי של סמנים פני השטח תורם מאוד לרפואה משובי ומחקרים תא גזע על ידי מתן כלים מולקולריים באופן סלקטיבי להעשיר את האוכלוסייה תא גזע מרקמות נורמלי או פתולוגי מנות תרבות, מציע תא ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

איור 1B, 1B, 1B ו-1B משוחזרים מ-Bai ואח. מיכל עשור באישור מאגודת. הכימיה המלכותית אנו מודים לאיי האו במעבדה של אקס. סי. עבודה זו נתמכת על ידי הקרן הלאומית למדע הטבע של סין (מס ‘ 91753206 ל-Q. S. ו-X. C, No. 31371093 ל-Q. S., ו-Nos. 21425204 ו21672013 ל-X. C.).

Materials

BEND3 ATCC CRL-229
DMEM Gibco 11960044
L-glutamine Gibco 25030081 1%
Sodium pyruvate Sigma P5280 1%
N2 supplement Gibco 17502048 1 to 100
N-acetyl-L-cysteine Sigma A7250 1 mM
Papain Worthington LS003726 10 U/mL
B27 supplement Gibco 17504044 1 to 50
Poly-L-lysine Sigma P4707
basic Fibroblast growth factor Gibco PHG0261 10 ng/mL
Penicillin-Streptomycin Gibco 15140122 1%
Fetal bovine serum Gibco 10099141 10%
HBSS Gibco 14175095
Tripsin-EDTA, 0.25% Gibco 25200056
DPBS Gibco 14190094
Transwell Corning 3450
Paraformaldehyde Sigma 158127 4%
Sucrose Sangon A100335
DAPI Gibco 62248
RIPA buffer Thermo Scientific 89900
SDS-PAGE loading buffer 2X Solarbio P1018
6-well plate Corning 3335
Tris-Glycine protein gel invitrogen xp00100box
mouse monoclonal anti-Nestin Developmental Study Hybridoma Bank Rat-401 1 to 20
mouse monoclonal anti-beta-tubulin III Sigma T8860 1 to 1000
Alexa Fluor 488 goat anti-mouse IgG1 invitrogen A-21121 1 to 1000
Alexa Fluor 546 goat anti-mouse IgG2b invitrogen A-21143 1 to 1000
Albumin Bovine V Amresco 0332
Triton X-100 Amresco 0694
BCA assay kit Thermo Scientific 23225
dimethyl sulfoxide Sigma D2650
Brij97 Aladdin B129088
CuSO4 Sigma 209198
alkyne-biotin Click Chemistry Tools TA105
BTTAA Click Chemistry Tools 1236
Ac4ManNAz Click Chemistry Tools 1084 100 µM
9AzSia synthesized in lab
sodium ascorbate Sigma A4034
Methanol Sigma 34860
EDTA Sangon A100322
NaCl Sangon A100241
SDS Sangon A100227
Alexa Flour 647-conjugated streptavidin invitrogen S21374 1 to 1000
Triethanolamine Sigma V900257
Dynabeads M-280 Streptavidin  invitrogen 60210
ammonium bicarbonate Sigma 9830
Coomassie Brilliant Blue R-250 Thermo Scientific 20278
Isoflurane RWD Life Science Co. 970-00026-00
DNase I Sigma DN25 12 µg/mL
urea Sigma U5378

References

  1. Weissman, I. L. Stem Cells: Units of Development, Units of Regeneration, and Units in Evolution. Cell. 100, 157-168 (2000).
  2. Gage, F. H., Temple, S. Neural Stem Cells: Generating and Regenerating the Brain. Neuron. 80, 588-601 (2013).
  3. Gal, J. S. Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones. Journal of Neuroscience. 26, 1045-1056 (2006).
  4. Kawaguchi, A., et al. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development. 135, 3113-3124 (2008).
  5. Temple, S. The development of neural stem cells. Nature. 414, 112-117 (2001).
  6. Kwan, K. Y., Sestan, N., Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development. 139, 1535-1546 (2012).
  7. Kriegstein, A., Alvarez-Buylla, A. The Glial Nature of Embryonic and Adult Neural Stem Cells. Annual Review of Neuroscience. 32, 149-184 (2009).
  8. Wang, X., Tsai, J. W., LaMonica, B., Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience. 14, 555-561 (2011).
  9. Taverna, E., Götz, M., Huttner, W. B. The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annual Review of Cell and Developmental Biology. 30, 465-502 (2014).
  10. Bai, Q. R., Dong, L., Hao, Y., Chen, X., Shen, Q. Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chemical Communications. 54, 5486-5489 (2018).
  11. Shen, Q., et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 304, 1338-1340 (2004).
  12. Qian, X., et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron. 28, 69-80 (2000).
  13. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 446, 1023-1029 (2007).
  14. Cheng, B., Xie, R., Dong, L., Chen, X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. ChemBioChem. 17, 11-27 (2016).
  15. Lin, S. H., Guidotti, G. Purification of Membrane Proteins. Methods in Enzymology. 463, 619-629 (2009).
  16. Schmidt, J. R., et al. Pilot Study on Mass Spectrometry-Based Analysis of the Proteome of CD34+CD123+ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia. Proteomes. 6, (2018).
  17. Crisan, M., Dzierzak, E. The many faces of hematopoietic stem cell heterogeneity Development. Development. 144, 4195-4195 (2017).
  18. Uchida, N., et al. Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America. 97, 14720-14725 (2000).
  19. Qin, W., et al. Artificial Cysteine S-Glycosylation Induced by Per-O-Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie International Edition. , (2018).
  20. Gry, M., et al. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics. 10, 365 (2009).
  21. Hennen, E., et al. A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. Journal of Biological Chemistry. 288, 16538-16545 (2013).
  22. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology. 7, 473-483 (2006).
  23. O’Brian, C. A., Chu, F. ReviewPost-translational disulfide modifications in cell signaling—role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radical Research. 39, 471-480 (2005).
  24. Williamson, A. J. K., Whetton, A. D. The requirement for proteomics to unravel stem cell regulatory mechanisms. Journal of Cellular Physiology. 226, 2478-2483 (2011).
  25. Christensen, B., et al. Cell Type-specific Post-translational Modifications of Mouse Osteopontin Are Associated with Different Adhesive Properties. Journal of Biological Chemistry. 282, 19463-19472 (2007).
  26. Yanagisawa, M., Yu, R. K. The expression and functions of glycoconjugates in neural stem cells. Glycobiology. 17, 57R-74R (2007).
  27. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry. 48, 6571-6584 (2009).

Play Video

Cite This Article
Bai, Q., Dong, L., Shen, Q. Identifying Cell Surface Markers of Primary Neural Stem and Progenitor Cells by Metabolic Labeling of Sialoglycan. J. Vis. Exp. (151), e58945, doi:10.3791/58945 (2019).

View Video