Este protocolo detalla los pasos, costos y equipamiento necesario para generar e. coli-basado en extractos celulares e implementar en vitro reacciones de la síntesis de proteína dentro de 4 días o menos. Para aprovechar la naturaleza flexible de esta plataforma para aplicaciones generales, se discuten las condiciones de reacción que pueden ser adaptadas y optimizadas.
En los últimos 50 años, síntesis de proteínas libres de células (CFPA) ha emergido como una potente tecnología para aprovechar la capacidad transcripcional y traduccional de células dentro de un tubo de ensayo. Obviando la necesidad de mantener la viabilidad de la célula y eliminando la barrera celular, PFC ha sido fundamental para aplicaciones emergentes en biofabricación de proteínas tradicionalmente difíciles, así como aplicaciones de prototipado rápido para Ingeniería Metabólica y genómica funcional. Nuestros métodos para la implementación de un e. coli-basado PFC plataforma permiten a los usuarios nuevos para acceder a muchas de estas aplicaciones. Aquí, se describen métodos para preparar extracto mediante el uso de medios enriquecidos, frascos desconcertados y un método reproducible de lisis celular armonioso basado en baño de ultrasonidos. Este extracto puede utilizarse para expresión de proteínas capaces de producir 900 μg/mL o más de proteína fluorescente verde super carpeta (sfGFP) en apenas 5 h de la disposición experimental para análisis de datos, dado que las existencias de reactivos apropiados han sido preparadas de antemano. El costo estimado de inicio de obtención de reactivos es de $4.500 que se sostienen miles de reacciones a un costo estimado de $0,021 por μg de proteína producida o $0,019 por μl de reacción. Además, los métodos de expresión de la proteína reflejan la facilidad de la instalación de reacción en sistemas comercialmente disponibles debido a la optimización de reactivos Premezclados, a una fracción del costo. Con el fin de que el usuario pueda aprovechar la naturaleza flexible de la plataforma de PFC para aplicaciones generales, hemos identificado una gran variedad de aspectos de la plataforma que puede ser afinado y optimizado dependiendo de los recursos disponibles y los resultados de la expresión de la proteína deseada.
Síntesis de proteína sin células (PFC) ha emergido como una tecnología que ha abierto un número de nuevas oportunidades para la producción de proteínas, genómica funcional, ingeniería metabólica y más en los últimos 50 años1,2. En comparación con el estándar en vivo plataformas de expresión de la proteína, PFC proporciona tres ventajas fundamentales: 1) la naturaleza libre de la plataforma permite la producción de proteínas que serían potencialmente tóxicas o ajenas a la célula3,4 ,5,6; 2) inactivación de la DNA genomic y la introducción de una plantilla de DNA que codifican los genes de interés canalizar toda la energía sistémica dentro de la reacción a la producción de la proteína de interés; y 3) el carácter abierto de la plataforma permite al usuario modificar y supervisar las condiciones de reacción y composición en tiempo real7,8. Este acceso directo a la reacción es compatible con el aumento de los sistemas biológicos químicos ampliados y condiciones redox para la producción de nuevas proteínas y la afinación de procesos metabólicos2,9, 10. directa acceso también permite al usuario combinar la reacción de PFC con ensayos de actividad en un sistema del solo-pot para ciclos de diseño-construcción-prueba más rápida11. La capacidad para realizar la reacción de PFC en gotas de pequeño volumen o en los dispositivos basados en papel más apoya esfuerzos de descubrimiento de alto rendimiento y prototipado rápido12,13,14,15 ,16. Como resultado de estas ventajas y la naturaleza de listo del sistema, PFC únicamente ha permitido una variedad de aplicaciones de la biotecnología como la producción de proteínas que son difíciles de expresar soluble en vivo17, 18,19,20, detección de la enfermedad21,22,23, en demanda de biofabricación de18,24 ,25,26,27y educación28,29, todos los cuales muestran la flexibilidad y la utilidad de la plataforma libre de células.
Sistemas de PFC pueden ser generados desde una gran variedad de lisados crudos de ambas variedades de células procariotas y eucariotas. Esto permite diversas opciones en el sistema de elección, cada uno de los cuales tiene ventajas y desventajas dependiendo de la aplicación de interés. Sistemas de PFC también varían mucho en productividad, costo y tiempo de preparación. Los más comúnmente utilizan celular se producen extractos de germen de trigo, reticulocitos de conejo, células de los insectos y células de Escherichia coli , siendo esta última la más rentable hasta la fecha mientras que produce los mayores rendimientos volumétricos de la proteína30 . Mientras otros sistemas de PFC pueden ser ventajosos para su maquinaria de modificación poste-de translación innata, surgiendo aplicaciones utilizando e. coli-maquinaria base son capaces de cerrar la brecha mediante la generación de site-specifically fosforilada y proteínas glicosiladas en demanda31,32,33,34,35.
Reacciones de PFC se pueden ejecutar en cualquier lote, continuo intercambio sin células (CECF) o flujo continuo sin células (CFCF) formatos. El formato por lotes es un sistema cerrado cuya reacción es limitada debido a la disminución de cantidades de reactivos y la acumulación de subproductos inhibitorios de la reacción. Métodos CECF y CFCF aumentan la vida útil de la reacción y así dar lugar a rendimientos volumétricos creciente de la proteína en comparación con la reacción de lote. Esto se logra permitiendo que los subproductos de la síntesis de la proteína debe sacar el recipiente de la reacción mientras que nuevos reactivos se suministran en el transcurso de la reacción2. En el caso de CFCF, la proteína de interés también puede removerse de la cámara de reacción, mientras que en la CECF, la proteína de interés permanece en la cámara de reacción compuesta por una membrana semipermeable36,37. Estos métodos son especialmente valiosos para superar los bajos rendimientos volumétricos de difícil-a-expresan proteínas de interés38,39,40,41,42, 43. Los desafíos en la implementación de los enfoques CECF y CFCF son 1) mientras que resultan en un uso más eficiente de la maquinaria de la bio responsable de la transcripción y traducción, que requieren en particular grandes cantidades de reactivos que aumenta el costo general y 2) requieren más complejas configuraciones de reacción y equipo especializado en comparación con el formato de lote44. Con el fin de garantizar la accesibilidad para los nuevos usuarios, los protocolos describen foco en el formato por lotes en volúmenes de reacción de 15 μl con recomendaciones específicas para aumentar el volumen de reacción a la escala de mililitro.
Los métodos presentados en este documento permiten no expertos con habilidades básicas de laboratorio (como estudiantes) para implementar el crecimiento celular, preparación del extracto y formato reacción configuración de lote para una e. coli-basado sistema de PFC. Este enfoque es rentable en comparación con los kits disponibles en el mercado sin sacrificar la facilidad de la instalación de reacción basado en el kit. Además, este enfoque permite a las aplicaciones en el laboratorio y en el campo. Cuando se decide implementar PFC, nuevos usuarios completamente deben evaluar la eficacia de los sistemas de expresión de la proteína convencional para la inversión de arranque, como PFC no puede ser superior en todos los casos. Los métodos de PFC aquí descritos permiten al usuario aplicar directamente una variedad de aplicaciones, incluyendo la genómica funcional, la producción de proteínas que son insuperables para expresión en vivo , así como campo de prueba de alto rendimiento aplicaciones como biosensores y kits educativos para la biología sintética. Aplicaciones adicionales tales como la ingeniería metabólica, de las condiciones de expresión de la proteína, detección de enfermedades y escalado utilizando métodos CECF o CFCF siguen siendo posibles pero pueden requerir experiencia con la plataforma de PFC más modificación de la reacción condiciones. Nuestros métodos de combinan crecimiento en medios enriquecidos y el desconcertado, con métodos relativamente rápidos y reproducibles de lisis celular mediante sonicación, seguido por una configuración simplificada de reacción de PFC que utiliza mezclas optimizadas45. Mientras que los métodos de crecimiento celular han convertido en algo estandarizados dentro de este campo, métodos de lisis celular varían ampliamente. Además de sonicación, métodos de lisis comunes incluyen la utilización de una prensa francesa, un homogeneizador, batidores de grano, o lisozima y otras perturbaciones bioquímicas y físicas métodos46,47,48, 49. nuestros métodos, se obtienen aproximadamente 2 mL de extracto crudo de la célula por 1 L de las células. Esta cantidad de extracto celular puede soportar 400 15 μl PFC reacciones, cada producción ~ 900 μg/mL de proteína de sfGFP de reportero de la plantilla de plásmido pJL1-sfGFP. Este método cuesta $ 0,021/μg de sfGFP producido ($.019/μl de reacción), excluyendo el costo de mano de obra y equipo (suplementario Figura 1). A partir de cero, este método puede aplicarse en 4 días por una sola persona y repetir reacciones PFC pueden completarse dentro de las horas (figura 1). Además, el protocolo puede ser aumentado en volumen para lotes más grandes de preparación de los reactivos para satisfacer las necesidades del usuario. Lo importante es el protocolo que presentamos se puede implementar laboratorio entrenado no expertos como estudiantes, ya que sólo requiere conocimientos básicos de laboratorio. Los procedimientos descritos a continuación y el video que lo acompaña han sido desarrollados específicamente para mejorar la accesibilidad de la plataforma de PFC de e. coli de amplio uso.
Síntesis de proteínas libres de células se ha convertido en una tecnología potente y propicia para una gran variedad de aplicaciones que van desde comercializa para prototipado rápido de sistemas bioquímicos. La amplitud de aplicaciones es compatible con la capacidad para controlar, manipular y aumentar la maquinaria celular en tiempo real. A pesar del creciente impacto de esta tecnología de plataforma, adaptación amplia ha sido lento debido a matices técnicos en la aplicación de los métodos. A través de este…
The authors have nothing to disclose.
Autores desean reconocer la Dr. Jennifer VanderKelen, Andrea Laubscher y Tony Turretto para soporte técnico, Wesley Kao, Layne Williams y Christopher Hight para discusiones útiles. Autores también reconocen apoyo de la Bill y Linda helada fondo, centro para aplicaciones en biotecnología Chevron Biotecnología aplicada investigación dotación beca investigación de Cal Poly, estudiante y programa de actividades creativas (RSCA 2017), la financiación y la National Science Foundation (NSF-1708919). MZL reconoce la subvención graduado del Universidad del estado de California. MCJ reconoce el ejército investigación oficina W911NF-16-1-0372, National Science Foundation otorga MCB-1413563 y MCB-1716766, la fuerza aérea de investigación laboratorio de centro de excelencia Grant FA8650-15-2-5518, la concesión de la Agencia de defensa amenaza reducción HDTRA1-15-10052/P00001, el David y Lucile Packard Foundation, el programa del erudito profesor Camille Dreyfus, el Departamento de energía BER Grant DE-SC0018249, el programa científico de fronteras humanas (RGP0015/2017), la concesión ETOP DOE Instituto genoma, y el consorcio biomédico de Chicago con el apoyo de los fondos de Searle en Chicago Community Trust para apoyo.
Luria Broth | ThermoFisher | 12795027 | |
Tryptone | Fisher Bioreagents | 73049-73-7 | |
Yeast Extract | Fisher Bioreagents | 1/2/8013 | |
NaCl | Sigma-Aldrich | S3014-1KG | |
Potassium Phosphate Dibasic | Sigma-Aldrich | 60353-250G | |
Potassium Phosphate Monobasic | Sigma-Aldrich | P9791-500G | |
D-Glucose | Sigma-Aldrich | G8270-1KG | |
KOH | Sigma-Aldrich | P5958-500G | |
IPTG | Sigma-Aldrich | I6758-1G | |
Mg(OAc)2 | Sigma-Aldrich | M5661-250G | |
K(OAc) | Sigma-Aldrich | P1190-1KG | |
Tris(OAc) | Sigma-Aldrich | T6066-500G | |
DTT | ThermoFisher | 15508013 | |
tRNA | Sigma-Aldrich | 10109541001 | |
Folinic Acid | Sigma-Aldrich | F7878-100MG | |
NTPs | ThermoFisher | R0481 | |
Oxalic Acid | Sigma-Aldrich | P0963-100G | |
NAD | Sigma-Aldrich | N8535-15VL | |
CoA | Sigma-Aldrich | C3144-25MG | |
PEP | Sigma-Aldrich | 860077-250MG | |
K(Glu) | Sigma-Aldrich | G1501-500G | |
NH4(Glu) | MP Biomedicals | 02180595.1 | |
Mg(Glu)2 | Sigma-Aldrich | 49605-250G | |
Spermidine | Sigma-Aldrich | S0266-5G | |
Putrescine | Sigma-Aldrich | D13208-25G | |
HEPES | ThermoFisher | 11344041 | |
Molecular Grade Water | Sigma-Aldrich | 7732-18-5 | |
L-Aspartic Acid | Sigma-Aldrich | A7219-100G | |
L-Valine | Sigma-Aldrich | V0500-25G | |
L-Tryptophan | Sigma-Aldrich | T0254-25G | |
L-Phenylalanine | Sigma-Aldrich | P2126-100G | |
L-Isoleucine | Sigma-Aldrich | I2752-25G | |
L-Leucine | Sigma-Aldrich | L8000-25G | |
L-Cysteine | Sigma-Aldrich | C7352-25G | |
L-Methionine | Sigma-Aldrich | M9625-25G | |
L-Alanine | Sigma-Aldrich | A7627-100G | |
L-Arginine | Sigma-Aldrich | A8094-25G | |
L-Asparagine | Sigma-Aldrich | A0884-25G | |
Glycine | Sigma-Aldrich | G7126-100G | |
L-Glutamine | Sigma-Aldrich | G3126-250G | |
L-Histadine | Sigma-Aldrich | H8000-25G | |
L-Lysine | Sigma-Aldrich | L5501-25G | |
L-Proline | Sigma-Aldrich | P0380-100G | |
L-Serine | Sigma-Aldrich | S4500-100G | |
L-Threonine | Sigma-Aldrich | T8625-25G | |
L-Tyrosine | Sigma-Aldrich | T3754-100G | |
Fisherbrand Premium Microcentrifuge Tubes: 2.0 mL | Fisher Scientific | 05-408-138 | |
Fisherbrand Premium Microcentrifuge Tubes: 1.5 mL | Fisher Scientific | 05-408-129 | |
Fisherbrand Premium Microcentrifuge Tubes: 0.6 mL | Fisher Scientific | 05-408-120 | |
PureLink HiPure Plasmid Prep Kit | ThermoFisher | K210007 | |
Ultrasonic Processor | QSonica | Q125-230V/50Hz | 3.175 mm diameter probe |
Avanti J-E Centrifuge | Beckman Coulter | 369001 | |
JLA-8.1000 Rotor | Beckman Coulter | 366754 | |
1L Centrifuge Tube | Beckman Coulter | A99028 | |
Tunair 2.5L Baffeled Shake Flask | Sigma-Aldrich | Z710822 | |
Microfuge 20 | Beckman Coulter | B30134 | |
New Brunswick Innova 42/42R Incubator | Eppendorf | M1335-0000 | |
Cytation 5 | BioTek | ||
Strep-Tactin XT Starter Kit | IBA | 2-4998-000 | |
pJL1-sfGFP | Addgene | 69496 | |
BL21(DE3) | New England BioLabs |