As nanopartículas de ouro anfifílicas podem ser usadas em muitas aplicações biológicas. Um protocolo para sintetizar nanopartículas de ouro revestido por uma mistura binária de ligantes e uma caracterização detalhada dessas partículas é apresentada.
As nanopartículas de ouro cobertas com uma mistura de 1-octanethiol (OT) e 11-mercapto-1-undecane ácido sulfônico (MUS) têm sido extensivamente estudadas por causa de suas interações com membranas celulares, bilayers lipídico e vírus. Os ligantes hidrófilos tornam essas partículas coloidalmente estáveis em soluções aquosas e a combinação com ligantes hidrofóbicos cria uma partícula anfifílica que pode ser carregada com drogas hidrofóbicas, fundir-se com as membranas lipídicas e resistir a inespecífica adsorção de proteínas. Muitas destas propriedades dependem do tamanho da nanopartícula e da composição do escudo do ligante. É, portanto, crucial ter um método sintético reprodutível e técnicas de caracterização confiáveis que permitam a determinação de propriedades de nanopartículas e a composição da casca do ligante. Aqui, uma redução química de uma fase, seguida por uma purificação completa para sintetizar estas nanopartículas com diâmetros abaixo de 5 nanômetro, é apresentada. A relação entre os dois ligantes na superfície da nanopartícula pode ser ajustada através de sua relação estequiométrica utilizada durante a síntese. Nós demonstramos como as várias técnicas rotineiras, tais como a microscopia de elétron da transmissão (tem), a ressonância magnética nuclear (RMN), a análise termogravimétrica (TGA), e a espectrometria ultravioleta-visível (UV-VIS), são combinadas a compreensivamente caracterizar os parâmetros físico-químicos das nanopartículas.
A concha de ligante de nanopartículas de ouro pode ser projetada para expor várias propriedades diferentes que podem ser aplicadas para enfrentar os desafios da biomedicina1,2,3,4. Essa versatilidade permite o controle das interações intermoleculares entre nanopartículas e biomoléculas5,6,7. A hidrofobicidade e a carga desempenham um papel decisivo, bem como outros parâmetros superficiais que afetam a forma como as nanopartículas interagem com as biomoléculas5,8,9. Para sintonizar as propriedades superficiais das nanopartículas, a escolha de moléculas de tiolato que compõem a concha do ligante oferece uma infinidade de possibilidades, de acordo com as características procuradas. Por exemplo, uma mistura de moléculas de ligantes com grupos finais hidrofóbicos e hidrofílicos (por exemplo, carregados) são freqüentemente usadas para gerar nanopartículas anfífilas10,11.
Um exemplo proeminente deste tipo de nanopartículas é protegido por uma mistura de OT e de Mus (doravante chamado Mus: nanopartículas do ot) que foi mostrado para possuir muitas propriedades relevantes12,13,14. Primeiro, com uma composição de casca de ligantes de 66% MUS (doravante 66:34 MUS: OT), a estabilidade coloidal das nanopartículas é alta, atingindo até 33% em peso em água desionizada, bem como em soro fisiológico tamponado com fosfato (1x, 4 mM de fosfato, 150 mM NaCl)15. Além disso, estas partículas não precipitam em valores de pH relativamente baixos: por exemplo, em pH 2,3 e com concentrações de sal de 1 M NaCl15, estas nanopartículas permanecem coloidalmente estáveis por meses. A razão estequiométrica entre as duas moléculas na casca do ligante é importante porque dita a estabilidade coloidal em soluções com alta resistência iônica16.
Estas partículas têm sido mostradas para atravessar a membrana celular sem Poram-lo, através de uma via de energia independente1,12. A fusão espontânea entre estas partículas e os bicamadas do lipido subjaz sua difusividade através das membranas de pilha17. O mecanismo por trás dessa interação é a minimização do contato entre uma área de superfície hidrofóbica solvente-acessível e moléculas de água após a fusão com bicamadas lipídico18. Comparado a nanopartículas de All-MUS (nanopartículas que têm apenas o ligante MUS em sua casca), a maior hidrofobicidade no MUS misto: nanopartículas de OT (por exemplo, em um 66:34 MUS: OT composição) aumenta a extensão do diâmetro do núcleo que pode fundir com lipídios bicamadas18. Diferentes organizações de automontagem do escudo ligante correlacionam-se com modos de ligação distintos de 66:34 MUS: nanopartículas de OT com várias proteínas, como albumina e ubiquitina, quando comparadas às partículas de All-MUS19. Recentemente, relatou-se que 66:34 Mus: as nanopartículas do ot podem ser utilizadas como um agente antiviral do largo-espectro que destrua irreversivelmente os vírus por causa das ligações eletrostáticas multivalentes de ligantes do Mus e de acoplamentos-locais de ligantes do ot ao capsídeo proteínas14. Em todos estes casos, verificou-se que o conteúdo hidrofóbico, bem como o tamanho do núcleo das nanopartículas, determina como essas interações bio-nano acontecem. Estas propriedades diversas de nanopartículas de Mus: OT alertaram muitos estudos da simulação do computador que visaram esclarecer os mecanismos que sustentam as interações entre o mus: partículas do OT e várias estruturas biológicas tais como bicamadas do lipido20.
A preparação de nanopartículas do MUS: OT-Protected au representa alguns desafios. Primeiramente, o ligante carregado (Mus) e o ligante hydrofóbico (OT) são immiscible. Assim, a solubilidade das nanopartículas e dos ligantes deve ser levada em consideração ao longo da síntese, bem como durante a caracterização. Adicionalmente, a pureza das moléculas do ligante do Mus-especificamente, o índice de sais inorgânicos no material começar-influencia a qualidade, a reprodutibilidade, assim como a estabilidade coloidal a curto e a longo prazo das nanopartículas.
Aqui, uma síntese detalhada e a caracterização desta classe de nanopartículas anfifílicas do ouro protegidas por uma mistura de MUS e de OT são esboçadas. Um protocolo para a síntese do ligante do Mus negativamente carregado é relatado para assegurar a pureza e, daqui, a reprodutibilidade de synteses diferentes da nanopartícula. Em seguida, o procedimento para gerar essas nanopartículas, com base em uma síntese de uma fase comum, seguida pela purificação completa, é relatada em detalhes. Várias técnicas de caracterização necessárias21, tais como tem, UV-VIS, TGA, e RMN, foram combinadas para obter todos os parâmetros necessários para quaisquer outros experimentos biológicos.
Este protocolo descreve primeiramente a síntese do ligante do Mus e, então, a síntese e a caracterização do Mus anfifílico: nanopartículas do ouro do ot. Sintetizar o MUS com teor mínimo de sal permite uma melhor fiabilidade da relação estequiométrica entre os ligantes durante a síntese de nanopartículas, que é um factor-chave para a síntese reprodutível das nanopartículas de MUS: OT com um alvo hidrofóbico conteúdo (Figura 8). O uso de metanol como solvente comum para MUS…
The authors have nothing to disclose.
Z.P.G. e FS agradecem a Fundação Nacional de Ciências da Suíça e, especificamente, a NCCR ‘ engenharia de sistemas moleculares ‘. Z.L. e FS agradecem o apoio da subvenção da Swiss National Science Foundation Division II. Todos os autores agradecem a Quy ONG por discussões frutíferas e pela revisão do manuscrito.
11-bromo-1-undecene | Sigma Aldrich | 467642-25 ml | |
Sodium Sulfite | Sigma Aldrich | S0505-250 g | |
Benzyltriethyl-ammonium bromide | Sigma Aldrich | 147125-25 g | |
Methanol | VWR | BDH1135-2.5 LP | |
DI water | Millipore | ZRXQ003WW | Deionized water |
1 L round bottom flask | DURAN | 24 170 56 | |
Diethyl ether | Sigma Aldrich | 1.00930 EMD Millipore | |
Stirring bar | Sigma Aldrich | Z329207, | |
Dow Corning High Vacuum Grease | Sigma Aldrich | Z273554 ALDRICH | |
Filtering flask | DURAN | 20 201 63 | |
Filtering Buchner Funnel | FisherSci | 11707335 | |
Ethanol >99.8%, ACS, Reagent | VWR | 2081.321DP | |
Deuterium dioxide | Sigma Aldrich | 151882 ALDRICH | |
Thioacetic acid 96% | Sigma Aldrich | T30805 ALDRICH | |
Carbon black | Sigma Aldrich | 05105-1KG | |
Celite | Sigma Aldrich | D3877 SIGMA-ALDRICH | Filtration medium |
Condenser | Sigma Aldrich | Z531154 | |
Hydrochloric acid, ACS reagent 37% | Sigma Aldrich | 320331 SIGMA-ALDRICH | |
Sodium Hydroxide, BioXtra, pellets (anhydrous) | Sigma Aldrich | S8045 SIGMA-ALDRICH | |
Centrifuge tubes | VWR | 525-0155P | |
250 mL round bottom flask | DURAN | 24 170 37 | |
500 mL round bottom flask | DURAN | 24 170 46 | |
Nitric acid, fACS reagent 70% | Sigma Aldrich | 438073 SIGMA-ALDRICH | |
Gold(III) chloride trihydrate >99.9% trace metal basis | Sigma Aldrich | 520918 ALDRICH | |
1-octanethiol >98.5% | Sigma Aldrich | 471836 ALDRICH | |
Sodium Borohydride purum p.a.>96% | Sigma Aldrich | 71320 ALDRICH | |
Separatory funnel | SIgma Aldrich | Z330655 SIGMA | |
Funnel | DURAN | 21 351 46 | |
2V folded filtering papers | Whatman | 1202-150 | |
Amicon filters | Merck | UFC903024 | |
Iodine, ACS reagent, >99.8%, solid | Sigma Aldrich | 207772 SIGMA-ALDRICH | |
5 mm NMR-Tubes, Type 5HP (high precision) | Armar | 32210.503 | Length 178 mm |
Methanol-d4 99.8 atom%D | Armar | 16400.2035 | |
TGA crucible | Thepro | 9095-9270.45 | |
400 mesh carbon supported copper grid | Electron Microscopy Science | CF400-Cu | |
quartz cuvette | Hellma Analytics | 100-1-40 |