Este protocolo visualmente se comunica a preparação de tronco cerebral-medular e clarifica a preparação de fatias transversais de tronco cerebral de uma forma abrangente e passo a passo. Ele foi projetado para aumentar a reprodutibilidade e aumentar a probabilidade de se obter fatias ritmicamente ativo, viáveis e duradouras, para gravar saída neural das regiões respiratórias do tronco cerebral.
Mamíferos ritmo inspiratório é gerado a partir de uma rede neuronal em uma região da medula chamada o preBötzinger complex (pBC), que produz um sinal que está dirigindo a contração rítmica dos músculos inspiratórios. Atividade neural rítmica gerado no pBC e transportadas para outros pools neuronais para a musculatura da respiração pode ser estudada usando várias abordagens, incluindo em bloco, gravações de nervo e gravações de fatia transversal de carro. No entanto, os métodos publicados anteriormente não extensivamente descrita o processo de dissecção de tronco cerebral-medular de forma transparente e reprodutível para estudos futuros. Aqui, apresentamos uma visão abrangente de um método usado para reproducibly cortar fatias de tronco cerebral ritmicamente ativo contendo os circuitos neuronais necessários e suficientes para geração e transmissão de movimentação inspiratória. Este trabalho se baseia nos protocolos de eletrofisiologia anterior da medula espinhal-tronco cerebral para aumentar a probabilidade de obtenção confiável fatias viáveis e ritmicamente ativo para gravar saída neuronal do pBC, neurônios cortéx hipoglosso (XII pMN), e neurônios hipoglosso (XII MN). O trabalho apresentado expande-se sobre métodos publicados anteriores, fornecendo ilustrações detalhadas, passo a passo da dissecação, de filhote de rato inteiro, a fatia in vitro que contém as raízes do XII.
A rede neural respiratória do tronco cerebral fornece um domínio fértil para compreender as características gerais das redes neurais rítmicas. Em particular, o interesse está no desenvolvimento de roedores neonatal respirando e compreender como se desenvolve o ritmo da respiração. Isto pode ser feito usando uma abordagem multi-nível, incluindo na pletismografia de todo animal vivo, in vitro, em bloco, gravações de nervo e in vitro fatia gravações que contenham o gerador de ritmo de respiração. Reducionista em vitro en bloc e fatia gravações são um método vantajoso usar quando interrogando os mecanismos subjacentes rhythmogenesis respiratória e circuitos neurais na região da medula espinhal-tronco cerebral do desenvolvimento de roedores. O sistema respiratório em desenvolvimento inclui aproximadamente 40 tipos de células, caracterizados por padrão, incluindo as do centro respiratório1,2a disparar. A rede respiratória central inclui um grupo de neurônios ritmicamente ativos localizado na medula ventrolateral rostral1,3. Rhythmogenesis respiratório dos mamíferos é gerado de um autorhythmic interneurônio rede apelidado o complexo de preBötzinger (pBC), que foi localizado experimentalmente através de tanto fatia e en bloc preparações à base de mamíferos neonatal tronco cerebral-espinhal cabos de3,4,5,6,7,8. Esta região tem uma função semelhante ao nó sinoatrial (SA) no coração e gera um sistema de tempo inspiratório a respiração de unidade. Partir do pBC, o ritmo inspiratório é transportado para outras regiões do tronco cerebral (incluindo o núcleo motor hipoglosso) e piscinas de motor da coluna vertebral (tais como os neurônios motores frênico que impulsionam o diafragma)9.
Atividade rítmica pode ser obtida usando o tronco encefálico medula espinhal pt bloco preparações ou fatias de uma variedade de populações de células, incluindo as raízes nervosas de C3-C5, raízes do nervo XII, núcleo motor hipoglosso (XII MN), neurônios cortéx hipoglosso (XII pMN), e o pBC3,10,11,12. Enquanto esses métodos de coleta de dados foram bem sucedidos em um punhado de laboratórios, muitos dos protocolos não são apresentados de uma forma que é totalmente reproduzível para novos pesquisadores entrando em campo. Obter viável e ritmicamente ativo en bloc e fatia preparações requer uma atenção aguda ao detalhe por todos os passos da dissecação e protocolo de corte fatia. Protocolos anteriores extensivamente descrever os vários procedimentos de gravação e eletrofisiologia, ainda falta o detalhe na parte mais crítica de obter uma preparação do tecido viável: executar o procedimento de dissecção e fatia de tronco cerebral-medular.
Eficientemente obter preparação ritmicamente ativo e viável en bloc ou fatia gravações de eletrofisiologia do tronco cerebral-medular requer que todas as etapas ser executada corretamente, com atenção e rapidamente (normalmente, todo o procedimento relacionado aqui pode ser realizada em cerca de 30 min). Pontos críticos do protocolo de eletrofisiologia de tronco cerebral-medular que não foram previamente bem descritos incluem a dissecação das raízes nervosas e do procedimento de corte sobre o vibratome. Este protocolo é o primeiro a gradual comunicar visualmente a dissecação de tronco cerebral-medular para novos pesquisadores e especialistas na área. Este protocolo também completamente explica técnicas cirúrgicas, Marcos e outros procedimentos para ajudar futuros pesquisadores em padronizar as fatias e em bloco de preparações que contêm os circuitos exato desejado em cada experimento. Os procedimentos apresentados aqui podem ser usados em filhotes neonatais tanto o rato e o rato.
Adaptação do protocolo aqui apresentado em um bloco de pt ou fatia fluxo de trabalho é vantajoso para os laboratórios e estudos que gostam de utilizar também em bloco tronco cerebral-medular e/ou fina fatia preparações para as gravações de eletrofisiologia. O método de dissecação e fatia apresentado, combinado com métodos anteriormente relatados por outros17,18,19, permitirá a preparação pode ser reproduzida de t…
The authors have nothing to disclose.
S.B.P é um destinatário de uma bolsa de pesquisa graduação do Loma Linda University verão.
NaCl | Fisher Scientific | S271-500 | |
KCl | Sigma Aldrich | P5405-1KG | |
NaHCO3 | Fisher Scientific | BP328-1 | |
NaH2PO4 •H2O | Sigma Aldrch | S9638-25G | |
CaCl2•2H2O | Sigma Aldrich | C7902-500G | |
MgSO4•7H2O | Sigma Aldrich | M7774-500G | |
D-Glucose | Sigma Aldrich | G8270-1KG | |
Cold-Light source Halogen lamp 150W | AmScope | H2L50-AY | |
Dissection Microscope | Leica | M-60 | |
Vibratome 1000 Plus | Vibratome | W3 69-0353 | |
Magnetic Base | Kanetic | MB-B-DG6C | |
Isoflurane, USP | Patterson Veterinary | NDC 14043-704-06 | |
Sword Classic Double Edge Blades | Wilkinson | 97573 | |
Histoclear | Sigma-Aldrich | H2779 | |
Dumont #5 Fine Forceps | Fine Science Tools | 11254-20 | |
Dumont #5/45 Forcep | Fine Science Tools | 11251-35 | |
Scalpel Blades #10 | Fine Science Tools | 10010-00 | |
Scalpel Handel #3 | Fine Science Tools | 10003-12 | |
Spring Scissors Straight | Fine Science Tools | 15024-10 | |
Narrow Pattern Forcep Serrated/straight | Fine Science Tools | 11002-12 | |
Castroviejo Micro Dissecting Spring Scissors; Straight | Roboz | RS-5650 | |
Vannas Scissors 3" Curved | Roboz | RS-5621 | |
Insect pins, 0 | Fine Science Tools/8840604 | 26000-35 | |
Insect pins, 0, SS | Fine Science Tools | 26001-35 | |
Insect pins, 00 | Fine Science Tools | 26000-30 | |
Insect pins, 00, SS | Fine Science Tools | 26001-30 | |
Insect pins, 000 | Fine Science Tools | 26000-25 | |
Insect pins, 000, SS | Fine Science Tools | 26001-25 | |
Minutien pins, 0.10 mm | Fine Science Tools | 26002-10 | |
Minutien pins, 0.15 mm | Fine Science Tools | 26002-15 | |
Minutien pins, 0.2 mm | Fine Science Tools | 26002-20 | |
Fisher Tissue prep Parafin | fisher | T56-5 | |
Graphite | fisher | G67-500 | |
Delrin Plastic | Grainger | 3HMT2 | |
18 Gauge Hypodermic Needle | BD | 305195 |