Dieses Protokoll beschreibt die Virusinfektion in Vivo in Drosophila Melanogaster mit dem Nano-Injektionsverfahren und Grundtechniken zu Virus-Wirt Interaktionen analysieren zu etablieren.
Virus verbreitet ist eine der Hauptursachen von epidemischen Krankheiten. So ist es sehr wichtig, unser Wissen der Prävention und Behandlung von viralen Infektionen verlängern, Verständnis der Interaktion zwischen dem Virus und dem Host. Die Fruchtfliege Drosophila MelanOgaster erweist sich eine effiziente und produktive Modellorganismen für antivirale Faktoren und Virus-Wirt Interaktionen aufgrund genetischer Werkzeuge und hoch konservierte angeborene Immune untersuchen Signalwege. Die hier beschriebene Vorgehensweise zeigt eine Nano-Injektion-Methode, um virale Infektion zu etablieren und systemische antivirale Reaktionen in Erwachsenen fliegen zu induzieren. Die präzise Steuerung der viralen Injektion Dosis in dieser Methode ermöglicht hohen experimentelle Reproduzierbarkeit. In dieser Studie beschriebenen Protokolle sind die Vorbereitung von fliegen und das Virus, das Injektionsverfahren, überleben Rate Analyse, die Virus-Last-Messung sowie eine antivirale Weg-Bewertung. Der Einfluss Auswirkungen einer Virusinfektion durch die fliegen Hintergrund wurden hier erwähnt. Diese Infektion-Methode ist einfach durchzuführen und quantitativ wiederholbar; Es kann für Host/virale Faktoren bei der Virus-Wirt Interaktionen auf den Bildschirm und das Übersprechen zwischen angeborenen Immunsystems Signalisierung und anderer biologischer Signalwege in Reaktion auf eine virale Infektion zu sezieren angewendet werden.
Emerging virale Infektionen, vor allem von Arboviren, wie z. B. das Chikungunya-Virus1, das Dengue-Virus, Gelbfieber-Virus2 und ZikaVirus3, wurden eine große Bedrohung für die öffentliche Gesundheit durch Pandemien verursacht 4. dadurch ein besseres Verständnis der Virus-Wirt Interaktionen für Seuchenbekämpfung und Behandlung von viralen Erkrankungen beim Menschen immer wichtiger geworden. Für dieses Ziel müssen angemessene und effiziente Modelle hergestellt werden, um die Mechanismen, die Virus-Infektion zu untersuchen.
Die Fruchtfliege, Drosophilamelanogaster (D. Melanogaster), bietet ein leistungsfähiges System zur Untersuchung von Virus-Wirt Interaktionen5,6 und hat sich als eines der effizientesten Modelle menschlichen Viruserkrankungen7 zu studieren , 8 , 9. hoch konservierte antivirale Signalisierung Wege und unvergleichliche genetische Werkzeuge machen fliegt ein großes Modell, um signifikante Ergebnisse mit realen Auswirkungen auf antivirale Humanstudien zu produzieren. Darüber hinaus fliegen sind einfach und preiswert im Unterhalt im Labor und eignen sich für große Screening von Roman regulatorische Faktoren6,10 in das Virus und die Gastgeber während der Infektion.
Vier große hoch konservierte antivirale Wege (zB., die RNA-Interferenz (RNAi) Weg11, der JAK-STAT Signalweg12, die NF-κB-Signalweg und der Autophagie Weg13) sind gut bei Drosophila in den letzten Jahren untersucht Jahren6. Der RNAi-Weg ist eine breite antivirale Mechanismus, der meisten Arten von Virus-Infektion6,14unterdrücken kann. Störung der dieser Weg durch Mutation in den Genen wie Dicer-2 (Dcr-2) oder Argonaut 2 (AGO2) führen zu erhöhten Virus-Titer und Host Sterblichkeit15,16,17. Der JAK-STAT-Signalweg Verbindung Kontrolle der Infektion durch ein Virus aus der Familie Dicistroviridae und der Familie Flaviviridae bei Insekten, z.B.gebracht., Drosophila-C-Virus (DCV) fliegen16 und West Nil Virus (WNV) und Dengue-Virus in Mücke18,19. Die Drosophila Maut (homolog zu den menschlichen NF-κB-Signalweg) und Immunschwäche (IMD) Wege (ähnlich der menschlichen NF-κB und TNF Weg) sind beide in der Verteidigung Virus Invasion20,21, 22. Autophagie ist ein weiterer konservierten Mechanismus beteiligt an der Regulation des viralen Infektion, die sich gut in Drosophila23,24auszeichnet. So, Identifizierung von Roman regulatorische Faktoren dieser Wege und sezierenden Übersprechen zwischen diesen antivirale Signal- und anderen biologische Bahnen, wie Stoffwechsel, Altern, neuronale Reaktion und So weiter, können leicht in Drosophila einrichten System.
Obwohl die etabliertesten virale Infektionskrankheiten Modelle in Drosophila durch RNA-Viren, Infektionen durch die Wirbellosen Irisierende Virus 6I induziert werden (IV-6) und Kallithea Viren haben gezeigt, das Potential für die Untersuchung von DNA-Viren fliegen25, 26. Darüber hinaus kann das Virus auch geändert werden, um die Infektion von Drosophila, z. B. das Influenza-Virus9ermöglichen. Dies hat die Anwendung der Drosophila -Screening-Plattform erheblich erweitert. In diesem Verfahren verwenden wir DCV als Beispiel beschreiben, wie eine virale Infektionskrankheiten System in Drosophilazu entwickeln. DCV ist einen positiven Sinn einzelne gestrandeten RNA-Virus aus ca. 9300 Nukleotiden, Codierung 9 Proteine27. Als eine natürliche Erreger von D. MelanogasterDCV als geeignete Virus gilt als Host physiologische, Verhaltens- und basale Immunantwort bei Host-Virus Interaktion und Ko-Evolution28zu studieren. Darüber hinaus macht seine schnelle Sterblichkeit nach Infektion in Wildtyp fliegen DCV nützlich zum Bildschirm für resistent oder anfällig für Gene in der Host-29.
Allerdings gibt es mehrere Aspekte von Belang, wenn virale Infektionen in Drosophilastudieren. Beispielsweise haben symbiotische Bakterien Wolbachia die Fähigkeit, eine breite Spektren der RNA-Virus-Verbreitung in Drosophila und Mücke30,31,32hemmen. Den letzten Beweis zeigt einen möglichen Mechanismus welcher Wolbachia Blöcke Sindbis Virus (SINV) Infektion durch die Hochregulierung der Methyltransferase Mt2 Ausdruck in der Host-33. Darüber hinaus ist der genetische Hintergrund der Insekten auch für virale Infektion von entscheidender Bedeutung. Zum Beispiel die natürliche Polymorphismus im gen, Pastrel (pst), bestimmt die Infektanfälligkeit DCV in Drosophila34,35, während die Loci der Ubc-E2H und CG8492 Cricket-Paralyse-Virus (CrPV) und Flock Haus (FHV) Virusinfektion, bzw.36beteiligt sind.
Die besonderen Möglichkeiten, um die Virus-Wirt-Interaktion im fliegen, zu etablieren müssen laut Forschungszwecke wie eine Hochdurchsatz-Screen für Host Zellbestandteile in Drosophila Zelle Linien37,38, mündliche ausgewählt werden Infektion, Darm-spezifische antivirale Antwort22,39,40, Nadel stechen41,42 oder Nano-Injektion durch Übergabe epitheliale Barrieren um systemische Immunsystem stimulieren zu studieren Antworten. Nano-Injektion kann genau die virale Dosis um eine kontrollierte antiviralen Reaktion und eine physiologische Läsion43, induzieren steuern gewährleistet eine hohe Reproduzierbarkeit der experimentellen44. In dieser Studie beschreiben wir eine Nano-Injektion-Methode, um Virus-Wirt Interaktionen in Drosophila, unterstrichen die fliegen Hintergrundeffekte zu studieren.
In diesem Artikel präsentieren wir eine detaillierte Anleitung, wie eine virale Infektionskrankheiten System in Erwachsenen Drosophila Melanogaster mit Nano-Injektion. Die Protokolle sind die Vorbereitung der entsprechenden Fliegenschnüre und Virus bestand, Infektion Techniken, die Bewertung der infektiöse Indikatoren und die Messung der antiviralen Reaktion. Obwohl DCV als Beispiel für eine virale Erreger verwendet wird, wurden Dutzende von verschiedenen Arten von Viren erfolgreich für das Studium in Droso…
The authors have nothing to disclose.
Wir möchten die gesamte Pan-Labor in IPS zu danken. CAS. Wir danken Dr. Lanfeng Wang (IPS, CAS) für Dr. Seng Zhu (IPS, Paris), Dr. Jessica VARGAS (IPS, Paris) und Dr. Gonalo Cordova Steger (Springer Natur) und experimentelle Unterstützung für Kommentare. Diese Arbeit wurde unterstützt durch Zuschüsse aus dem strategischen Priorität Forschungsprogramm der chinesischen Akademie der Wissenschaften, L.P. (XDA13010500) und H.T (XDB29030300), der National Natural Science Foundation of China L.P. (31870887 und 31570897) und J.Y (31670909). L.P. ist Mitglied des CAS Youth Innovation Promotion Association (2012083).
0.22um filter | Millipore | SLGP033RS | |
1.5 ml Microcentrifuge tubes | Brand | 352070 | |
1.5 ml RNase free Microcentrifuge tubes | Axygen | MCT-150-C | |
10 cm cell culture dish | Sigma | CLS430167 | Cell culture |
100 Replacement tubes | Drummond Scientific | 3-000-203-G/X | |
15 ml tube | Corning | 352096 | |
ABI 7500 qPCR system | ABI | 7500 | qPCR |
Cell Incubator | Sanyo | MIR-553 | |
Centriguge | Eppendof | 5810R | |
Centriguge | Eppendof | 5424R | |
Chloroform | Sigma | 151858 | RNA extraction |
DEPC water | Sigma | 95284-100ML | RNA extraction |
Drosophila Incubator | Percival | I-41NL | Rearing Drosophila |
FBS | Invitrogen | 12657-029 | Cell culture |
flat bottom 96-well-plate | Sigma | CLS3922 | Cell culture |
Fluorescence microscope | Olympus | DP73 | |
Isopropyl alcohol | Sigma | I9516 | RNA extraction |
Lysis buffer (RNA extraction) | Thermo Fisher | 15596026 | TRIzol Reagent |
Lysis buffer (liquid sample RNA extraction) | Thermo Fisher | 10296028 | TRIzol LS Reagent |
Microscope | Olympus | CKX41 | |
Nanoject II Auto-Nanoliter Injector | Drummond Scientific | 3-000-204 | Nanoject II Variable Volume (2.3 to 69 nL) Automatic Injector with Glass Capillaries (110V) |
Optical Adhesive Film | ABI | 4360954 | qPCR |
Penicillin-Streptomycin, Liquid | Invitrogen | 15140-122 | Cell culture |
qPCR plate | ABI | A32811 | qPCR |
Schneider’s Insect Medium | Sigma | S9895 | Cell culture |
statistical software | GraphPad Prism 7 | ||
TransScript Fly First-Strand cDNA Synthesis SuperMix | TransScript | AT301 | RNA extraction |
Vortex | IKA | VORTEX 3 | RNA extraction |