Summary

一种用于座位平衡评估和训练的振动反馈装置

Published: January 20, 2019
doi:

Summary

一个坐着平台已经开发和组装, 被动地破坏了人类坐姿的稳定。在用户的稳定任务中, 惯性测量单元记录设备的运动, 振动元件向座椅提供基于性能的反馈。这种便携、多功能的设备可用于康复、评估和培训模式。

Abstract

姿势摄动、运动跟踪和感官反馈是现代技术, 分别用于挑战、评估和训练直立坐姿。所开发的协议的目标是构建和操作一个可以被动不稳定的坐姿平台, 而惯性测量单元则量化其运动, 振动元件则向用户提供触觉反馈。可互换座椅附件改变了设备的稳定性水平, 以安全地挑战座椅平衡。内置微控制器允许对反馈参数进行微调, 以增强感官功能。后置测量, 典型的平衡评估方案, 总结在定时平衡试验中获得的运动信号。到目前为止, 没有动态坐姿协议提供可变的挑战、量化和感官反馈, 而不受实验室限制。我们的研究结果表明, 当平衡困难被改变或提供振动反馈时, 设备的非残疾用户在术后测量中表现出显著的变化。这种便携、多功能的装置在康复 (骨骼、肌肉或神经损伤后)、训练 (用于运动或空间意识)、娱乐 (通过虚拟或增强现实) 和研究 (在骨骼、肌肉或神经损伤之后) 和研究 (与坐姿有关的疾病)。

Introduction

直立坐是其他人类感觉运动功能的先决条件, 包括熟练的运动 (打字) 和干扰平衡任务 (乘坐火车)。为了恢复和改善坐姿和相关功能, 采用了现代平衡训练技术: 不稳定的表面扰动坐姿1,2和运动跟踪量化平衡熟练程度3,4.当振动使用与性能相匹配的模式传递到身体时,平衡训练结果会得到改善5。这种感官反馈作为一种康复和训练方法, 显然是有效的;然而, 目前的感官反馈方法是面向持续平衡, 并要求实验室为基础的设备6,7

这里介绍的工作的目的是建立一个便携式设备, 可以坐在不同程度的被动不稳定, 而内置仪器记录其位置, 并提供振动反馈到坐着的表面。这种工具组合集成了以前在晃动椅2,4和振动反馈5,6, 7 的工作, 使这些工具的好处更强大, 更容易获得。此外, 根据已建立的文献, 在尿路后措施8的基础上, 提出了一个程序, 以训练直立坐姿数量结果的分析。这些方法适用于研究与振动反馈相结合时, 具有不稳定表面的坐姿平衡运动的效果。预期的应用包括运动训练、运动协调的普遍改善、平衡能力的评估以及骨骼、肌肉或神经损伤后的康复。

Protocol

这里描述的所有方法都得到了艾伯塔大学健康研究伦理委员会的批准。 1. 结构构件的结构和装配 为可互换的半球形基座构建一个连接接口: 将基螺母焊接到钢焊接板上。 使用计算机数控 (cnc) 铣床从聚乙烯构建圆柱形底盘、盖子和底座, 如图 1所示。将底板固定在底座上, 将底座固定在底盘上。注: 用于连接螺栓和其他部件的磨机功能是?…

Representative Results

表 2显示了每一种实验条件, 从对 ap 和 ml 支撑表面倾斜的观测中得出的后图测量, 平均超过12名参与者进行的144次平衡试验 (每名参与者 2 x 2 x 3 项试验)。 更改平衡条件的效果:选择基本条件取决于眼睛状况 (即,当眼睛闭合时, 基本条件更稳定)。因此, 基础和眼睛状况一起被认为是一个独立变量 (?…

Discussion

提出了一种便携式、仪器仪表、坐姿装置的制造方法。该设备是便携式和耐用的, 在以前研究的摆动椅子2,4和振动反馈5, 6,7,使这些工具的好处更强大和易于访问.按照反向装配协议准备设备的运输或存储。通过附加具有不同曲率的基座, 可以调节平衡任务的难度。任务难度的选择至关?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

提交人承认本科生 animesh singh kumawat、kshitij Agarwal、quinn boser、benjamin cheung、caroline collins、sarah lojczyc、derek schlenker、katherine schoepp 和 arthur zielinski 的设计工作。这项研究的部分资金来自加拿大自然科学和工程研究理事会的发现赠款 (rgpin-2014-04666)。

Materials

Chassis McMaster-Carr 8657K421 Moisture-Resistant LDPE Polyethylene Sheet 1-1/2" Thick, 24" X 24"
Lid McMaster-Carr 8657K414 Moisture-Resistant LDPE Polyethylene Sheet 1/4" Thick, 24" X 24"
Base McMaster-Carr 8657K414 Moisture-Resistant LDPE Polyethylene Sheet 1/4" Thick, 24" X 24"
Grip-Tape McMaster-Carr 6243T471 Nonabrasive Antislip Tape, Textured, 6" Wide Strip, 2' Long, Black
Base Nut McMaster-Carr 90596A039 Steel Round-Base Weld Nut, 5/8"-11 Thread Size
Weld Plate McMaster-Carr 1388K142 Low-Carbon Steel Sheet 1/16" Thick, 3" X 3", Ground Finish
Threaded Rod McMaster-Carr 90322A170 3" 5/16"-18 Medium-Strength Alloy Steel Threaded Stud
Sleeve McMaster-Carr 8745K19 Chemical-Resistant PVC (Type I) Rod 1-1/4" Diameter
Square Flange McMaster-Carr 8910K395 Low Carbon Steel Bar, 1/8" Thick, 1" Wide
Hitch McMaster-Carr 4931T123 Bolt-Together Framing Heavy-Duty Steel, 1-1/2" Square
Curved Base McMaster-Carr 8745K48 PVC Rod, 6" Diameter
Hitch Insert McMaster-Carr 6535K313 Bolt-Together Framing Heavy-Duty Steel, 1" Square
Extrusion McMaster-Carr 6545K7 1045 Cold Drawn Steel Square Bar Stock, 1' X 1" Wide, Unpolished
Clamp Vlier TH103A Adjustable Torque Knob
Footrest McMaster-Carr 6582K431 4130 Steel Tubing, 1" X 1" Wide, 0.065" Wall Thickness, Unpolished Mill Finish
Counterwieght McMaster-Carr 8910K67 Low-Carbon Steel Rectangular Bar 1-1/8" Thick, 4" Width
Clevis Pin McMaster-Carr 97245A616 Zinc-Plated Steel Clevis Pin with Hairpin Cotter Pin, 3/16" Diameter, 1-9/16" Usable Length
Microprocessor Arduino MEGA 2560 Microcontroller board with 54 digital I/O pins and USB connection
Inertial Measurement Unit x-io Technologies Ltd. x-IMU Inertial Measurement Unit and Attitude Heading Reference System with enclosure
Vibrating Tactor Precision Microdrives DEV-11008 Lilypad Vibe Board, available from SparkFun Electronics

References

  1. Behm, D. G., Muehlbauer, T., Kibele, A., Granacher, U. Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis. Sports Medicine. 45, 1645-1669 (2015).
  2. Larivière, C., Mecheri, H., Shahvarpour, A., Gagnon, D., Shirazi-Adl, A. Criterion validity and between-day reliability of an inertial-sensor-based trunk postural stability test during unstable sitting. Journal of Electromyography and Kinesiology. 23, 899-907 (2013).
  3. Paillard, T., Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Research International. 2015, (2015).
  4. Williams, J., Bentman, S. An investigation into the reliability and variability of wobble board performance in a healthy population using the SMARTwobble instrumented wobble board. Physical Therapy in Sport. 25, 108 (2017).
  5. Wall, C., Kentala, E. Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. Journal of Vestibular Research. 20, 61-69 (2010).
  6. Alahakone, A. U., Arosha Senanayake, ., N, S. M. Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. , 1148-1153 (2009).
  7. Shull, P. B., Damian, D. D. Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. Journal of NeuroEngineering and Rehabilitation. 12, 12-59 (2015).
  8. Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., Myklebust, B. M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering. 43, 956-966 (1996).
  9. Ribot-Ciscar, E., Vedel, J. P., Roll, J. P. Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neuroscience Letters. , 130-135 (1989).
  10. Churchill, E., McConville, J. T. . Sampling and Data Gathering Strategies for Future USAF Anthropometry. , (1976).
  11. Lee, H., Granata, K. P. Process stationarity and reliability of trunk postural stability. Clinical Biomechanics. 23, 735-742 (2008).
  12. Silfies, S. P., Cholewicki, J., Radebold, A. The effects of visual input on postural control of the lumbar spine in unstable sitting. Human Movement Science. 22, 237-252 (2003).
  13. Loughlin, P., Mahboobin, A., Furman, J. Designing vibrotactile balance feedback for desired body sway reductions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 1310-1313 (2011).
  14. Goodworth, A. D., Wall, C., Peterka, R. J. Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 17, 397-408 (2009).
  15. Marchal-Crespo, L., Reinkensmeyer, D. J. Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation. 6, 20-35 (2009).
  16. Lee, B., Kim, J., Chen, S., Sienko, K. H. Cell phone based balance trainer. Journal of NeuroEngineering and Rehabilitation. 9, 1-14 (2012).
  17. Sienko, K. H., Balkwill, M. D., Wall, C. Biofeedback improves postural control recovery from multi-axis discrete perturbations. Journal of NeuroEngineering and Rehabilitation. 9, 53-64 (2012).
  18. Williams, A., et al. Design and Evaluation of an Instrumented Wobble Board for Assessing and Training Dynamic Seated Balance. Journal of Biomechanical Engineering. 140, 1-10 (2017).
  19. van Dieën, J. H., Koppes, L. L. J., Twisk, J. W. R. Postural sway parameters in seated balancing; their reliability and relationship with balancing performance. Gait Posture. 31, 42-46 (2010).
  20. Sigrist, R., Rauter, G., Riener, R., Wolf, P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin and Review. 20, 21-53 (2013).

Play Video

Cite This Article
Williams, A. D., Vette, A. H. A Vibrotactile Feedback Device for Seated Balance Assessment and Training. J. Vis. Exp. (143), e58611, doi:10.3791/58611 (2019).

View Video