Nous présentons ici une méthode pour générer des systèmes de transcription binaire spécifique des tissus chez la drosophile en remplaçant le premier exon codante des gènes avec les pilotes de la transcription. La méthode CRISPR/Cas9 met une séquence transactivateur en vertu du règlement endogène d’un gène remplacé et par conséquent facilite transctivator expression exclusivement dans des modèles spatio-temporels de gène-spécifique.
Systèmes de transcription binaires sont de puissants outils génétiques, largement utilisés pour visualiser et manipuler des cellules sort et l’expression génétique dans des groupes spécifiques de cellules ou tissus chez les organismes modèles. Ces systèmes contiennent deux composantes dans des lignes distinctes de transgéniques. Une ligne pilote exprime un activateur de la transcription sous le contrôle des promoteurs/exhausteurs de tissu-spécifiques et un ports de ligne journaliste/effecteur un gène cible placé en aval du site de liaison de l’activateur de transcription. Animaux hébergeant les deux composants induire la transactivation de tissu-spécifique d’une expression du gène cible. Expression spatio-temporelle précise du gène dans les tissus ciblés est critique pour l’interprétation impartiale de l’activité cellulaire/génétique. Par conséquent, l’élaboration d’une méthode pour générer les lignes exclusives spécifiques des cellules/tissus conducteur est essentiel. Nous présentons une méthode pour générer le système hautement spécifique aux tissus expression ciblée en employant un « groupés régulièrement Interspaced Short palindromique Repeat/CRISPR-associés » (CRISPR/AR)-base de génome édition technique. Dans cette méthode, l’endonucléase Cas9 est ciblé par deux chimérique guide RNAs (gRNA) à des sites spécifiques dans le premier exon codante d’un gène dans le génome de la drosophile pour créer des cassures double-brin (DSB). Par la suite, les mécanismes de réparation cellulaire autonome à l’aide d’un plasmide de donneurs exogènes qui contient la séquence de transactivateur, permet réparation axés sur l’homologie (HDR) de l’ORD, ayant pour résultat précise suppression et le remplacement de l’exon avec le transactivateur séquence. Le transactivateur frappé composant logiciel enfichable est exprimée exclusivement dans les cellules où le cis-éléments de régulation du gène remplacé sont fonctionnels. Le protocole étape par étape détaillé présenté ici pour générer un pilote binaire de transcriptional exprimé dans drosophile fgf/sans branches-produisant des cellules épithéliales/neuronales peut être adoptée pour n’importe quelle expression de gène – ou tissu-spécifique.
La boîte à outils génétique pour l’expression des gènes ciblés a été bien développé chez la drosophile, ce qui en fait l’un des meilleurs systèmes de modèle pour étudier la fonction des gènes impliqués dans une grande variété de processus cellulaires. Systèmes d’expression binaire, telles que la levure Gal4/UAS (séquence activatrice en amont), a été adopté pour les études de piégeage et gène exhausteur de tissu-spécifiques dans la drosophile modèle génétique1 (Figure 1). Ce système a facilité l’élaboration d’un grand nombre de techniques telles que le règlement spatio-temporelle de la surexpression du gène, études, knockout dans certains groupes de cellules ainsi que dans l’ablation de la cellule, marquage cellulaire, traçage direct du cellulaire et moléculaire processus en embryon et tissus, suivi de lignée et analyses de mosaïque au cours du développement. Un certain nombre de système de transcription binaires, tels que les bactéries LexA/LexAop système (Figure 1) et Q-système de Neurospora , sont de puissants outils génétiques qui sont maintenant largement utilisés chez la drosophile, en plus de le système de Gal4/UAS original pour l’expression de gène ciblé pour1,2,3.
Nous présentons ici une méthode pour générer le système très fiable expression binaire spécifique des tissus en employant une technique de modification du génome. Les progrès récents dans la technologie d’édition CRISPR/Cas9 génome ont permis des possibilités sans précédent apporter des modifications du génome dirigée dans un large éventail d’organismes. Par rapport aux autres techniques de modification du génome disponible, le système CRISPR/Cas9 est peu coûteux, efficace et fiable. Cette technologie utilise des composants du système immunitaire adaptatif bactérien : une endonucléase Cas9 de Streptococcus pyogenes qui crée une pause bicaténaires (DSB) et un ARN chimérique guide (gRNA), qui guide le Cas9 à un site particulier génome pour ORD ciblée4. Les cellules contiennent la machinerie pour réparer l’ORD en utilisant différentes voies. Fin non homologue rejoindre (NHEJ) conduit à petites insertions ou suppressions de perturber la fonction du gène, alors que la réparation axés sur l’homologie (HDR) introduit un défini réalisé/recherchées génomique dans/knock-knock-out par une donneuse HDR exogène en utilisant comme modèle. La stratégie de remplacement axés sur le HDR peut être efficacement utilisée pour générer un système hautement fiable expression binaire spécifique des tissus qui peut surmonter toutes les limites des méthodes traditionnelles enhancer trap. Nous décrivons une procédure pas à pas pour une utilisation de réparation de base CRISPR/Cas9 HDR dans la production d’une ligne pilote binaire de transcription qui s’exprime sous le contrôle d’endogène régulation transcriptionnelle et post-transcriptionnelle d’un Drosophila gène. Dans ce protocole, nous démontrons la génération d’une ligne pilote spécifique pour dépourvu de branches (bnl) gène codant pour une protéine de famille FGF qui réglemente la morphogenèse ramification de trachéale bronchique épithélium5. Dans cet exemple, le premier codage exon du gène bnl a été remplacé par l’enchaînement d’une séquence de transactivateur LexA bactérienne sans altérer toute endogène cis-séquences régulatrices du gène bnl . Nous montrons que la stratégie a généré une ligne pilote de bnl-LexA spatio-temporelle contrôle l’expression d’un gène rapporteur placé en aval de LexAoperator (LexAop ou LexO) exclusivement dans bnl- cellules épithéliales/mésenchymateuses/neuronales exprimant.
Traditionnellement, pièges de renforceur de drosophile ont été générés par deux méthodes différentes. Une des façons comprend insertion aléatoire d’un conducteur (eg., Gal4) séquence du génome par transposition (e.g., transposition de l’élément P)1 . Par ailleurs, les séquences de conducteur peuvent être placés sous le contrôle transcriptionnel d’une région d’enhancer/promoteur présumé dans une construction de plasmide, qui serait ensuite int…
The authors have nothing to disclose.
Nous remercions le Dr F. Port, K. Dr. o ‘ Connor-Giles et Dr S. Feng pour des discussions sur la stratégie de CRISPR ; Dr. T.B. Kornberg et le centre de Stock Bloomington réactifs ; Installation de base d’imagerie UMD ; et le financement du NIH : R00HL114867 et R35GM124878 à SR.
X-Gal/IPTG | Gentrox (Genesee Scientific) | 18-218 | cloning |
LB-Agar | BD Difco | BD 244520 | cloning |
Tris-HCl | Sigma Aldrich | T3253 | Molecular Biology |
EDTA | Sigma Aldrich | E1161 | Molecular Biology |
NaCl | Sigma Aldrich | S7653 | Molecular Biology |
UltraPure DNase/RNase-Free Water | ThermoFisher Scientific | 10977-023 | Molecular Biology |
10%SDS | Sigma Aldrich | 71736 | Molecular Biology |
KOAc | Fisher-Scientific | P1190 | Molecular Biology |
EtOH | Fisher-Scientific | 04-355-451 | Molecular Biology |
GeneJET Miniprep | ThermoFisher Scientific | K0503 | Miniprep |
PureLink HiPure Plasmid Maxipep kits | ThermoFisher Scientific | K210006 | Maxiprep |
BbsI | NEB | R0539S | Restriction enzyme |
Primers | IDT-DNA | PCR | |
pCFD4 | Kornberg Lab | DNA template and vector for gRNA | |
KAPA HiFi Hot Start- (Kapa Biosystems) | Kapa biosystems | KK2601 | PCR |
Q5-high fidelity Taq | NEB | NEB #M0491 | PCR |
Gibson Assembly Master Mix | NEB | NEB #E2611 | DNA assembly |
pBPnlsLexA:p65Uw | Addgene | DNA template for LexA amplification | |
Proteinase K | ThermoFisher Scientific | 25530049 | Molecular Biology |
2x PCR PreMix, with dye (red) | Sydlab | MB067-EQ2R | Molecular Biology |
Gel elution kit | Zymo Research (Genesee Scientific) | 11-300 | Molecular Biology |
TRI reagent | Sigma-Aldrich | Molecular Biology | |
Direct-zol RNA purification kits | Zymo Research (Genesee Scientific) | 11-330 | Molecular Biology |
OneTaq One-Step RT-PCR Kit | NEB | E5315S | Molecular Biology |
lexO-CherryCAAX | Kornberg Lab | Fly line | |
UAS-CD8:GFP | Kornberg lab | Fly line | |
btl-Gal4 | Kornberg lab | Fly line | |
MKRS/TB6B | Kornberg lab | Fly line | |
Confocal Microscope SP5X | Leica | Imaging expression pattern | |
CO2 station | Genesee Scientific | 59-122WCU | fly pushing |
Stereo microscope | Olympus | SZ-61 | fly pushing |
Microtube homogenizing pestles | Fisher-Scientific | 03-421-217 | genomic DNA isolation |
NanoDrop spectrophotometer | ThermoFisher Scientific | ND-1000 | DNA quantification |