Se describe un método para el aislamiento de las células endocrinas del páncreas embrionarios, neonatales y postnatales seguidos por la secuencia de RNA unicelular. Este método permite el análisis del desarrollo del linaje endocrino pancreático, de células dinámicas heterogeneidad y transcriptómicos.
Las células endocrinas pancreáticas, que se agrupan en islotes, regulan la estabilidad de la glucosa sanguínea y el metabolismo energético. Los tipos de células distintos en islotes, incluyendo células β secretoras de insulina, se distinguen de los comunes progenitores endocrinos durante la fase embrionaria. Inmaduras células endocrinas amplían a través de la proliferación celular y maduran durante un periodo de desarrollo postnatal largo. Sin embargo, los mecanismos subyacentes a estos procesos no están claramente definidos. Sola célula secuenciación del RNA es un enfoque prometedor para la caracterización de poblaciones celulares distintas y las vías de diferenciación de seguimiento celular linaje. Aquí, describimos un método para la secuenciación del RNA unicelular de células β pancreáticas aisladas de páncreas embrionarios, neonatales y postnatales.
El páncreas es un órgano vital metabólico en mamíferos. El páncreas está compuesto por compartimientos endocrinos y exocrinos. Las células endocrinas pancreáticas, incluyendo las células β productoras de insulina y células productoras de glucagón α, se agrupan juntos en los islotes de Langerhans y coordinadamente regulan la homeostasis de la glucosa sistémica. Resultados de la disfunción de las células endocrinas en la diabetes mellitus, que se ha convertido en un problema de salud pública importante en todo el mundo.
Las células endocrinas pancreáticas derivan de Ngn3+ progenitores durante embriogénesis1. Más tarde, durante el período perinatal, las células endocrinas proliferan a islotes inmaduro forma. Estas células inmaduras continúan desarrollar y gradualmente se convierten en islotes de madurados, que se convierten en ricamente vascularizados para regular la homeostasis de la glucosa de sangre en adultos2.
Aunque se ha identificado un grupo de factores transcripcionales que regulan la diferenciación de la célula β, el camino preciso de la maduración de las células β es todavía confuso. Además, el proceso de maduración de la célula β implica también la regulación de la célula número expansión3,4 y la generación de heterogeneidad celular5,6. Sin embargo, los mecanismos de regulación de estos procesos no han sido bien estudiados.
Sola célula secuenciación del RNA es un enfoque potente perfil subpoblaciones celulares y traza de vías del desarrollo de linaje celular7. Tomando ventaja de esta tecnología, la clave de los eventos que ocurren durante el desarrollo de islotes pancreáticos pueden ser descifrados en el nivel unicelular8. Entre los protocolos de la secuencia de RNA unicelular, Smart-Sec2 permite la generación de cDNA de larga duración con mejor sensibilidad y precisión y el uso de reactivos estándar en menor costo9. Smart-Sec2 tarda aproximadamente dos días para construir una biblioteca de cDNA de la secuencia10.
Aquí proponemos un método para el aislamiento de las células β marcados con fluorescencia desde el páncreas del feto adulto Ins1 RFP ratones transgénicos11usando celular activado por fluorescencia (FACS) de clasificación, y el rendimiento de transcriptómicos analiza en el sola célula nivel, usando la tecnología Smart-Sec2 (figura 1). Este protocolo puede extenderse para analizar los transcriptomas de todos los tipos de células endocrinas pancreáticas en Estados normales, patológicos y el envejecimiento.
En este protocolo, hemos demostrado un método efectivo y fácil de usar para el estudio de los perfiles de expresión de la sola célula de las células β pancreáticas. Este método podría utilizarse para aislar las células endocrinas del páncreas embrionarios, neonatales y postnatales y realizar análisis transcriptómico de unicelulares.
El paso más crítico es el aislamiento de las células β solo en buen estado. Páncreas totalmente inundadas responden mejor a la digestión subsigu…
The authors have nothing to disclose.
Agradecemos el Centro Nacional de Ciencias de la proteína, Beijing (Universidad de Pekín) y el centro Tsinghua de Pekín para la plataforma de computación de Ciencias de la vida. Este trabajo fue financiado por el Ministerio de ciencia y tecnología de China (2015CB942800), la nacional Ciencias naturales Fundación de China (31521004, 31471358 y 31522036) y financiación del centro Tsinghua de Pekín para Ciencias de la vida a C. R.X.
Collagenase P | Roche | 11213873001 | |
Trypsin-EDTA (0.25 %), phenol red | Thermo Fisher Scientific | 25200114 | |
Fetal bovine serum (FBS) | Hyclone | SH30071.03 | |
Dumont #4 Forceps | Roboz | RS-4904 | |
Dumont #5 Forceps | Roboz | RS-5058 | |
30 G BD Needle 1/2" Length | BD | 305106 | |
Stereo Microscope | Zeiss | Stemi DV4 | |
Stereo Fluorescence microscope | Zeiss | Stereo Lumar V12 | |
Centrifuge | Eppendorf | 5810R | |
Centrifuge | Eppendorf | 5424R | |
Polystyrene Round-Bottom Tube with Cell-Strainer Cap | BD-Falcon | 352235 | |
96-Well PCR Microplate | Axygen | PCR-96-C | |
Silicone Sealing Mat | Axygen | AM-96-PCR-RD | |
Thin Well PCR Tube | Extragene | P-02X8-CF | |
Cell sorter | BD Biosciences | BD FACSAria | |
Capillary pipette | Sutter | B100-58-10 | |
RNaseZap | Ambion | AM9780 | |
ERCC RNA Spike-In Mix | Life Technologies | 4456740 | |
Distilled water | Gibco | 10977 | |
Triton X-100 | Sigma-Aldrich | T9284 | |
dNTP mix | New England Biolabs | N0447 | |
Recombinant RNase Inhibitor | Takara | 2313 | |
Superscript II reverse transcriptase | Invitrogen | 18064-014 | |
First-strand buffer (5x) | Invitrogen | 18064-014 | |
DTT | Invitrogen | 18064-014 | |
Betaine | Sigma-Aldrich | 107-43-7 | |
MgCl2 | Sigma-Aldrich | 7786-30-3 | |
Nuclease-free water | Invitrogen | AM9932 | |
KAPA HiFi HotStart ReadyMix (2x) | KAPA Biosystems | KK2601 | |
VAHTS DNA Clean Beads XP beads | Vazyme | N411-03 | |
Qubit dsDNA HS Assay Kit | Invitrogen | Q32854 | |
AceQ qPCR SYBR Green Master Mix | Vazyme | Q121-02 | |
TruePrep DNA Library Prep Kit V2 for Illumina | Vazyme | TD502 | Include 5x TTBL, 5x TTE, 5x TS, 5x TAB, TAE |
TruePrep Index Kit V3 for Illumina | Vazyme | TD203 | Include 16 N6XX and 24 N8XX |
High Sensitivity NGS Fragment Analysis Kit | Advanced Analytical Technologies | DNF-474 | |
1x HBSS without Ca2+ and Mg2+ | 138 mM NaCl; 5.34 mM KCl 4.17 mM NaHCO3; 0.34 mM Na2HPO4 0.44 mM KH2PO4 |
||
Isolation buffer | 1 × HBSS containing 10 mM HEPES, 1 mM MgCl2, 5 mM Glucose, pH 7.4 | ||
FACS buffer | 1 × HBSS containing 15 mM HEPES, 5.6 mM Glucose, 1% FBS, pH 7.4 | ||
NaCl | Sigma-Aldrich | S5886 | |
KCl | Sigma-Aldrich | P9541 | |
NaHCO3 | Sigma-Aldrich | S6297 | |
Na2HPO4 | Sigma-Aldrich | S5136 | |
KH2PO4 | Sigma-Aldrich | P5655 | |
D-(+)-Glucose | Sigma-Aldrich | G5767 | |
HEPES | Sigma-Aldrich | H4034 | |
MgCl2 | Sigma-Aldrich | M2393 | |
Oligo-dT30VN primer | 5'-AAGCAGTGGTATCAACGCAGAGTACT30VN-3' | ||
TSO | 5'-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3' | ||
ISPCR primers | 5'-AAGCAGTGGTATCAACGCAGAGT-3' | ||
Gapdh Forward primer | 5'-ATGGTGAAGGTCGGTGTGAAC-3' | ||
Gapdh Reverse primer | 5'-GCCTTGACTGTGCCGTTGAAT-3' | ||
Ins2 Forward primer | 5'-TGGCTTCTTCTACACACCCA-3' | ||
Ins2 Reverse primer | 5'-TCTAGTTGCAGTAGTTCTCCA-3' |