Apresentamos um método automatizado para reconstrução tridimensional do germline Caenorhabditis elegans . Nosso método determina o número e a posição de cada núcleo dentro da linha germinativa e distribuição de proteína germline análises e estrutura do citoesqueleto.
O germline Caenorhabditis elegans (c. elegans) é usada para estudar vários processos biologicamente importantes, incluindo a dinâmica de desenvolvimento, apoptose e cromossomo de células-tronco. Enquanto o germline é um excelente modelo, a análise é frequentemente duas dimensões devido ao tempo e o trabalho necessário para análise tridimensional. Grandes leituras em tais estudos são a posição/número de núcleos e distribuição da proteína dentro da linha germinativa. Aqui, apresentamos um método para executar a análise automatizada do germline usando microscopia confocal e abordagens computacionais para determinar o número e posição dos núcleos em cada região do germline. Nosso método também analisa a distribuição de proteína germline que permite o exame tridimensional da expressão da proteína em diferentes origens genéticas. Além disso, nosso estudo mostra variações na arquitetura do citoesqueleto em distintas regiões do germline que podem acomodar requisitos específicos de desenvolvimento espaciais. Finalmente, nosso método permite que a contagem automatizada do esperma na espermateca de cada linha germinativa. Tomados em conjunto, nosso método permite a análise fenotípica rápida e reprodutível do germline c. elegans .
A conservação de sinalização com mamíferos vias faz c. elegans , um excelente modelo para o estudo de vários processos biológicos1,2. Em nosso laboratório, usamos o c. elegans germline para estudar o desenvolvimento de células-tronco, apoptose e expressão gênica. Enquanto o germline é uma estrutura tridimensional, muitos estudos são duas dimensões devido à natureza demorada e trabalhosa de análise tridimensional. É altamente provável que a análise bidimensional pode deturpar na vivo eventos no germline. O hermafrodita de adultos de c. elegans tem dois braços da linha germinal, cada um deles abriga uma célula somática ponta distal (DTC) que mantém distais células germinativas num estado indiferenciado3,4. Estas células germinativas começam a diferenciar como movem-se longe do DTC, escapar de sua influência e tornar-se oócitos e esperma como atingem a extremidade proximal da da linha germinal. Durante este processo, núcleos de células germinativas sofrem mitose, antes de fazer a transição para a meiose5,6. Produção de espermatozoides é completada pelo estágio larval 4 (L4) do desenvolvimento, após o qual os oócitos são produzidos durante a idade adulta. Os espermatozoides são armazenados na espermateca onde eles fertilizam oócitos para gerar embriões.
Existem vários fatores genéticos e ambientais que podem influenciar o desenvolvimento do germline em c. elegans , resultando em mudanças no número de núcleos, o número de eventos de apoptotic, dinâmica do cromossoma e expressão de proteínas e/ou localização7 ,8,9,10,11. A análise desses eventos requer a identificação de cada etapa de diferenciação com base na distribuição e morfologia nuclear. Para analisar com precisão esses parâmetros manualmente com um tamanho de amostra grande é trabalhosa e demorada. Para contornar estes inconvenientes e permitir a consistência da análise, desenvolvemos um método automatizado para análise tridimensional do c. elegans germline para núcleos contando, distribuição de núcleos, expressão de proteínas e do citoesqueleto estrutura. Combinando a microscopia confocal com renderização tridimensional, geramos parâmetros de tamanho e forma, para a identificação de cada estágio da diferenciação de células germinativas. Além disso, esse método permite a contagem de esperma e de núcleos de células germinativas, mais Pontuação do número de cromossomos em cada oócito.
Uma estrutura crucial do germline é o citoesqueleto, que fornece a estabilidade para o compartimento da linha germinal, SIDA a ciclose e proteção germline núcleos12. Usando processamento computacional, realizamos a reconstrução tridimensional do citoesqueleto germline e identificado características distintas do citoesqueleto, dentro da linha germinativa. Aqui, descrevemos um protocolo passo a passo para ilustrar a análise computacional como combinado com confocal de imagem permite uma análise abrangente do germline c. elegans .
Propomos um método rápido de análise tridimensional de c. elegans germline (Figura 1). Usando a análise tridimensional, é possível estudar a distribuição tridimensional do germline núcleos (Figura 2 e Figura 3), automatizada contagem de células (Figura 2), reconstrução do germline citoesqueleto ( Figura 3), distribuição de proteínas (Figura 4) e marcar o número de espermatozoides na espermateca e cromossomos em oócitos (Figura 5). O método não só permite a quantificação fácil e precisa do germline mas identifica fenótipos fisiologicamente relevantes.
O objetivo do presente protocolo é melhorar a precisão e reduzir o tempo necessário para a análise da linha germinal. Após preparação padrão de germlines dissecado, um modelo tridimensional do germline núcleos é preparado por processamento computacional. Permitindo a observação da distribuição de núcleos germline no espaço, renderização tridimensional calcula o número de núcleos em regiões específicas da da linha germinal. O aspecto crítico do nosso método é uma definição precisa dos parâmetro…
The authors have nothing to disclose.
Agradecemos seu apoio técnico Monash Microimaging. Algumas cepas foram fornecidas pelo centro de genética Caenorhabditis , que é financiado pelo NIH escritório de programas de infra-estrutura de pesquisa (OD010440 P40). Este trabalho foi apoiado por Monash University biomedicina descoberta Fellowship, NHMRC Project Grant (GNT1105374), NHMRC Senior Research Fellowship (GNT1137645) e bolsa de inovação veski: 23-VIF Roger Pocock.
C. elegans strains: wild type (N2, Bristol), rnp-8(tm2435) I/hT2[bli-4(e937) let-?(q782) qIs48] (I;III), cpb-3(bt17) I, glp-1 (e2141) III | Caenorhabditis Genetics Center (CGC) | ||
OP50 Escherichia coli bacteria | Homemade | ||
Nematode Growth Media (NGM) plates | Homemade | ||
polyclonal rabbit anti-REC-8 | SDIX | 29470002 | |
Alexa 488 conjugated antibody raised in goat | Thermofisher Scientific | A-21236 | |
Cytoskeletal dye phalloidin | Thermofisher Scientific | A-12380 | |
DAPI | Thermofisher Scientific | 62248 | |
Poly-L-lysine | Sigma Aldrich | P5899 | |
Tetramisol | Sigma Aldrich | P5899 | |
MgSO4 | Sigma Aldrich | M7506 | |
1M HEPES buffer, pH 7.4 | Sigma Aldrich | G0887 | |
10X PBS pH 7.4 | Thermofisher Scientific | AM9625 | |
Tween-20 | Sigma Aldrich | P1389 | |
EGTA | Sigma Aldrich | E3889 | |
37% Paraformaldehyde solution | Merck Millipore | 1040031000 | |
Normal goat serum | Sigma Aldrich | G9023 | |
Fluoroshield fixing reagent | Sigma Aldrich | F6182 | |
Ethanol | Millipore | 1009832511 | |
Methanol | Sigma Aldrich | 34860 | |
20°C & 25°CIncubator | Any brand | ||
Light microscope | Any brand | ||
Confocal microscope | Any brand (Leica, Zeiss) | ||
Computer equipped with Imaris suit 8.4.1 or later version, full licence to use the software and Matlab software. | Bitplane | ||
Phospho buffered saline, pH 7.4 | Homemade | ||
Teflon microscope slides | Tekdon | 941-322-8288 |