Quinasa dependiente de ciclina 1 (Cdk1) está activado en la fase G2 del ciclo celular y regula muchas vías celulares. Aquí, presentamos un protocolo para un ensayo de quinasa en vitro con Cdk1, que permite la identificación de sitios de fosforilación de Cdk1 específicos para establecer dianas celulares de esta quinasa importante.
Quinasa dependiente de ciclina 1 (Cdk1) es un regulador principal para el ciclo celular en todos los eucariotas y fosforila un estimado 8-13% del proteoma; sin embargo, el número de objetivos identificados para la Cdk1, particularmente en las células humanas es todavía bajo. La identificación de sitios de fosforilación de Cdk1 específicos es importante, ya que proporcionan penetraciones mecánicas en cómo Cdk1 controla el ciclo celular. Regulación del ciclo celular es esencial para la segregación cromosómica fiel, y defectos en este complicado proceso conducen a aberraciones cromosómicas y cáncer.
Aquí, describimos un ensayo en vitro kinasa que se utiliza para identificar sitios de fosforilación de Cdk1-específicos. En este ensayo, un purificado de la proteína está fosforilada en vitro por disponible en el comercio humano Cdk1/ciclina B. exitoso fosforilación es confirmada por SDS-PAGE, y sitios de fosforilación son identificados posteriormente por espectrometría de masas. También describimos protocolos de purificación que preparados de proteína altamente puro y homogéneo adecuados para el ensayo de quinasa y una prueba de enlace para la verificación funcional de los sitios de fosforilación identificados, que puntas de prueba de la interacción entre una señal de localización nuclear clásica (LNC) y su transporte nuclear receptor karyopherin α. Para ayudar con el diseño experimental, se revisan los enfoques para la predicción de sitios de fosforilación de Cdk1-específicos de secuencias de la proteína. Juntos estos protocolos presentan un enfoque muy potente que produce sitios de fosforilación de Cdk1-específicos y permite estudios mecanísticos en cómo Cdk1 controla el ciclo celular. Puesto que este método se basa en proteínas purificadas, pueden aplicarse a cualquier organismo y rendimiento confiables resultados del modelo, especialmente cuando se combinan con estudios funcionales de la célula.
Las quinasas son enzimas que transfiere grupos fosfato del ATP en sustratos y regulan muchos procesos celulares. Esta fosforilación es reversible, rápido, agrega dos cargas negativas y almacena la energía libre y es una de las modificaciones post-traduccionales más común utilizadas por las células. Cdk1, que también es conocido como homólogo de proteína 2 del ciclo de división celular (cdc2) es un controlador maestro para el ciclo celular en los eucariotas1,2,3,4,5y fosforila una Estimado 8-13% del proteoma6,7.
Aunque recientes estudios proteómicos han identificado muchos sitios de fosforilación en proteínas, en la mayoría de los casos, la quinasa responsable de estas modificaciones es desconocida. El número de conocidos destinos Cdk1, particularmente en las células humanas es baja7. La identificación de sitios de fosforilación de Cdk1 específicos es importante, ya que permite el estudio de mecanismos que establecen cómo Cdk1 controla el ciclo celular. Regulación del ciclo celular es importante para la segregación cromosómica fiel y la división celular, y una gran variedad de procesos celulares que ocurren para apoyar esta importante función fisiológica. Esto incluye detener la transcripción y la traducción antes del inicio de la mitosis, así como una dramática reorganización en la estructura celular y organización, como el desensamblaje de la envoltura nuclear, condensación del cromosoma y montaje del huso mitótico. Desregulación y errores en estos procesos causan cáncer, defectos de nacimiento o muerte mitótica de la célula. Inhibidores específicos de la Cdk1 como RO-3306 fueron desarrollados8, que proporcionan potentes herramientas para los estudios funcionales, y algunos de estos inhibidores están actualmente en ensayos clínicos para el tratamiento del cáncer (ver9 de revisión).
Aquí, describimos un análisis en vitro quinasa que permite la identificación de sitios de fosforilación de Cdk1-específicos. En este ensayo, disponible en el comercio humano Cdk1/ciclina B se utiliza para fosforilan un destino purificado proteína en vitro. Fosforilación de sustrato aumenta su masa y agrega dos cargas negativas; por lo tanto, acertada fosforilación es confirmada por un desplazamiento hacia arriba de la banda de gel de proteínas en SDS-PAGE. Sitios de fosforilación de CDK1-específicas se identifican posteriormente por análisis de espectrometría de masas de la proteína en vitro fosforilados. Para ayudar con el diseño experimental, también repasamos las herramientas computacionales y referencias para la predicción de sitios de fosforilación de Cdk1-específicos de la secuencia de la proteína. Además, también Describimos protocolos de purificación que preparados de proteína altamente puro y homogéneo adecuados para el análisis de la cinasa. Finalmente, los sitios de fosforilación identificada deben ser verificados por estudios funcionales, y aquí se describe un ensayo de enlace sencillo para ello. Combinado, esto es un enfoque muy potente que produce sitios de fosforilación de Cdk1-específicos y permite estudios mecanísticos en cómo Cdk1 controla el ciclo celular7,10,11. Puesto que este método se basa en proteínas purificadas, pueden aplicarse a cualquier organismo y rendimiento confiables resultados. Sin embargo, se recomienda la verificación funcional de los sitios la fosforilación obtenidos en vitro , como las células tienen mecanismos reguladores adicionales en su lugar, tales como modificaciones del posttranslational, socios de interacción o localización celular que puede representar sitios de fosforilación accesible o inaccesible para el reconocimiento de Cdk1.
CDK1 reconoce un sitio de fosforilación de consenso que consiste en (Ser/Thr-Pro-X-Lys/Arg), donde X es cualquier residuo y una serina o treonina es el sitio de fosforilación. Especialmente importante para el reconocimiento es la presencia de la prolina en la posición + 1. Además, se prefieren los residuos básicos en las posiciones + 2 o + 3, con más sitios de fosforilación específicos de Cdk1 contiene un Lys o Arg en el + 3 posición6,12.
Activación de Cdk1 es estrictamente regulada y conduce a la aparición de mitosis1,2,3,4,5. La actividad de Quinasas Ciclina-dependientes en general depende de su asociación con distintas ciclinas (ciclina A, B, C, D y E en seres humanos), que se expresan en el oscilante niveles durante todo el ciclo celular13. Expresión de CDK1 es constante durante todo el ciclo de la célula y la regulación de su actividad se basa en su asociación con las subunidades reguladoras ciclina A y ciclina B5,13,14,15, como así como las modificaciones post-traduccionales. Formación del complejo Cdk1/ciclina B se requiere para la cinasa activación5,14,15,16,17,18. En la fase G2, la ciclina B es traducido en el citosol e importado en el núcleo donde se une a Cdk15,14,15,16,17,18; sin embargo, Cdk1/ciclina B se mantiene inactiva por fosforilación en residuos Thr14 y Tyr15 por el humano Cdk1-inhibitorio quinasas Myt1 (quinasa cdc2-inhibitorio asociada a membrana tirosina y treonina-específico) y Wee1, respectivamente19, 20,21. En la fase G2 tardía, desfosforilación de Thr14 y Tyr15 por división celular ciclo 25 fosfatasa (cdc25) la actividad de la cinasa del complejo Cdk1/ciclina B activa y desencadena la iniciación de mitosis12,14, 18 , 20 , 22 , 23. fosforilación de Thr161 también se requiere para la activación de Cdk1/ciclina B y está mediada por Cdk7, la activación de Cdk quinasa (CAK)18. Degradación de la ciclina B en la anafase inactiva Cdk1, permitiendo la salida de mitosis24,25. Activación de Cdk1/ciclina B por lo tanto es un proceso complicado. El protocolo que presentamos se realiza comercialmente disponible Cdk1/ciclina B. Durante la expresión recombinante de este complejo en células de los insectos, es activado en vivo por quinasas endógeno14,20 y permanece activa en estado purificado. La resultante activa recombinante humano Cdk1/ciclina B es conveniente para en vitro el análisis de la cinasa.
Aquí, describimos un protocolo para la identificación de sitios de fosforilación de Cdk1-específicos en el centrómero humano proteína F (CENP-F)10. CENP-F es una proteína de cinetocoro que reside en el núcleo durante la mayor parte de la interfase (G1 y fase S) y se exporta al citosol en el G2 fase26,27,28 en un dependiente de la Cdk1 forma10, 11. localización nuclear es conferido por un bipartito LNC26. cNLSs son reconocidos por el transporte nuclear factor karyopherin α, que facilita, junto con karyopherin β y RanGDP, la importación de LNC-carga en el núcleo29. De las exportaciones nucleares en la fase G2 se facilitan a través de un camino desconocido de la exportación del10. Una vez que CENP-F se encuentra en el citosol, es reclutado a la envoltura nuclear y a su vez recluta la proteína motora dineína complejo30,31. Esta vía es importante en la posición del núcleo respectivo para el centrosoma durante etapas iniciales de ensamblaje del huso mitótico en una manera dependiente de la dineína, que es importante para la correcta sincronización de entrada mitotic y un proceso fundamental en el cerebro desarrollo30,31,32. A partir de la fase G2, CENP-F es también montado en el cinetocoro donde tiene importantes funciones para la fiel cromosoma segregación27,28,33,34,35 . Un paso clave de la regulación de estas vías es la exportación nuclear de CENP-F en la fase G2, que es dependiente de Cdk110,11. Describimos aquí un protocolo para la identificación de sitios de fosforilación de Cdk1-específicos en los LNCs de CENP-F. Phosphomimetic las mutaciones de estos sitios frenan importación nuclear de CENP-F, lo que sugiere que Cdk1/ciclina B regula directamente la localización celular de CENP-F por fosforilación de la LNC10.
En general, este análisis de la cinasa en vitro permite la identificación de sustratos específicos para las quinasa Cdk1. purificada blanco proteínas son fosforiladas en vitro por el complejo Cdk1/ciclina comercialmente disponible de la B y los sitios de fosforilación posteriormente son identificados por espectrometría de masas. La identificación de sitios de fosforilación de Cdk1 específicos apoya estudios mecanísticos que revelan cómo Cdk1 controla el ciclo celular.
Nuestro análisis de la cinasa en vitro es un método muy de gran alcance para identificar dianas moleculares para la quinasa Cdk1, que es un regulador maestro del ciclo celular y regula muchos procesos celulares importantes. El método determina si una proteína purificada es un sustrato para la Cdk1 y permite la identificación de sitios de fosforilación específicos. Esto facilita el estudio de mecanismos para la regulación de procesos celulares por fosforilación a través de Cdk1.
<p class="jove_conte…The authors have nothing to disclose.
Agradecemos a Dr. David Rey, Howard Hughes Medical Institute, Universidad de California en Berkeley para el análisis de espectrometría de masas y comentarios útiles. Agradecemos a Dr. Xuelian Zhu, Shanghai, institutos de ciencias biológicas, Academia de Ciencias de China, Shanghai, China para proporcionar una larga duración construcción de CENP-F. Finalmente, agradecemos al Dr. Susan Bane, Dr. Brian Callahan y Dr. Christof Grewer Universidad de Binghamton para acceso al equipo. Esta investigación fue financiada por la Fundación de investigación para la Universidad Estatal de Nueva York y el Departamento de química, Universidad Estatal de Nueva York en Binghamton.
2800 ml baffled Fernbach flask | Corning | 44232XL | |
ampicillin | Gold Biotechnology | A-301-25 | |
ATP | Fisher Scientfiic | BP413-25 | |
benzamidine hydrochloride | Millipore Sigma | B6506-25 | |
bottletop filter | Corning | 431161 | |
Cdk1/cyclin B recombinant, human 20,000 U/mL | New England Biolabs | P6020 | |
Cdk1/cyclin B (alternate source) | EMD Millipore | 14-450 | |
Cdk1/cyclin B (alternate source) | Invitrogen | PV3292 | |
Cdk1/cyclin B + 10x PK buffer | New England Biolabs | P6020 | |
CENP-F (residues 2987 – 3065) pGEX6P1 plasmid | Available upon request. | ||
centrifuge: Heraeus Multifuge X3R, cooled, with TX-1000 swing-out rotor | Thermo Scientific | 10033-778 | |
centrifugal filter units: Amicon Ultra-15 centrifugal filter units, 3 kDa cutoff, Ultracel-PL membranes | EMD Millipore | UFC900324 | |
chlorampenicol | Gold Biotechnology | C-105-100 | |
D/L methionine | Agros Organics / Fisher | 125650010 | |
desalting pipet tips: Zip tips | Millipore Sigma | ZTC18S008 | |
disposable chromatography columns, Econo-Pac 1.5 x 12 cm | Biorad | 7321010 | |
dithiothreitol | Gold Biotechnology | DTT50 | |
E. coli Rosetta 2(DE3)pLysS strain | EMD Millipore | 71403 | |
electrospray ionization Fourier transform ion | Bruker Amazon | Apex III | |
cyclotron resonance mass spectrometer | |||
electrospray ionization ion trap mass spectrometer | Bruker Amazon | custom | |
fixed angle rotor: Fiberlite F15-8x-50cy | Thermo Scientific | 97040-276 | |
FPLC system: Äkta Pure FPLC | GE Healthcare | 29032697 | |
Gel filtration column: Superdex 200 Increase 10/300 GL | GE Healthcare | 28990944 | |
glutathione agarose | Pierce | 16101 | |
glutathione, reduced | Millipore Sigma | G4251-50g | |
incubation shaker: multitron shaker | Infors | I10102 | |
isopropyl β-D-1-thiogalactopyranoside | Gold Biotechnology | I2481C50 | |
kanamycin | Gold Biotechnology | K-120-25 | |
karyopherin α pet-28a pres plasmid | Available upon request. | ||
Luria Bertani medium | Fisher Scientfiic | BP1426-2 | |
microcentrifuge 5418R, refrigerated | Eppendorf | 5401000013 | |
microtubes (0.5 ml) | Eppendorf | 30121023 | |
microtubes (1.5 ml) | Eppendorf | 30120086 | |
Nickel affinity gel: His-Select Nickel affinity gel | Millipore Sigma | P6611-100ml | |
pGEX-6P-1 plasmid | Millipore Sigma | GE28-9546-48 | |
phenylmethylsulfonyl fluoride | Gold Biotechnology | P470-10 | |
PS protease: PreScission protease | GE Healthcare | 27084301 | |
Phos-tag acrylamide | Wako Pure Chem. Ind. | 304-93521 | |
reduced gluthathione | Millipore Sigma | G4251-50g | |
roundbottom centrifuge tubes (Oakridge tubes) | Fisher Scientfiic | 055291D | |
site-directed mutagenesis kit: QuikChange Lightning | Agilent | 210518 | |
Site-Directed Mutagenesis Kit | |||
sonifier: Branson S-250D sonifier | Branson | 15 338 125 | |
Spectra/Por 1RC dialysis membrane (6-8 kDa cutoff) | Spectrum Labs | 08 670B | |
swing out rotor TX-1000 | Thermo Scientific | 10033-778 |