Citometria de fluxo em combinação com o cluster visual oferece um método fácil de usar e rápido para o estudo de biofilmes aquáticos. Pode ser usada para a caracterização do biofilme, detecção de mudanças na estrutura da comunidade de biofilme e detecção de partículas abióticas incorporado no biofilme.
Biofilmes são consórcios dinâmicos de microorganismo que desempenham um papel fundamental nos ecossistemas de água doce. Alterando a sua estrutura de comunidade, biofilmes respondem rapidamente às mudanças ambientais e podem ser usados assim como indicadores da qualidade da água. Atualmente, biofilme avaliação baseia-se principalmente na integrativo e funcionais pontos de extremidade, como atividade fotossintética ou respiratória, que não fornecem informações sobre a estrutura da comunidade de biofilme. Visualização computacional e citometria de fluxo oferecem um método alternativo, sensível e fácil de usar para avaliação da composição da Comunidade, particularmente da parte photoautotrophic de biofilmes de água doce. Ela exige apenas a preparação da amostra básica, após o qual a amostra inteira é executada através do citômetro de fluxo. As informações de ópticas e fluorescentes de célula única são usadas para visualização computacional e interpretação biológica. Suas principais vantagens sobre outros métodos são a velocidade de análise e a natureza de alta-informação-conteúdo. Citometria de fluxo fornece informações sobre as várias características de celular e biofilme em uma única medição: granulometria, densidade, pigmento, conteúdo, conteúdo abiótico no biofilme e informações taxonômicas grosseiras. No entanto, ele não fornece informações sobre a composição do biofilme sobre o nível de espécie. Vemos o alto potencial na utilização do método para monitoramento ambiental dos ecossistemas aquáticos e como uma avaliação de biofilme inicial passo que informa a jusante detalhadas investigações por métodos complementares e mais detalhados.
Biofilmes são consórcios dinâmicos de microorganismo que desempenham um papel fundamental nos ecossistemas de água doce, desde a produção primária, ciclagem de nutrientes e purificação de água para influenciar a distribuição de microrganismos e sua biodiversidade do ecossistema 1. quando biofilmes são expostos a mudanças nas condições ambientais ou de estressores, tais como produtos químicos, sua estrutura de comunidade desloca rapidamente no sentido mais tolerante espécie2,3. Sua alta sensibilidade transforma biofilmes em sistemas modelo atraente para monitoramento ambiental4, no entanto, nenhum dos métodos atuais é perfeitamente adequado para rastrear na verdade a dinâmica de uma comunidade de biofilme em uma maneira rápida e fácil.
O comumente usado conjunto de métodos para caracterizar biofilmes consiste a medição de pontos de extremidade funcionais e estruturais. A nível de toda a Comunidade, atividade fotossintética e respiratória, bem como a atividade de enzimas extracelulares fornece informações sobre o estado funcional do biofilme5,6,7,8 ,9. Acumulação de biomassa é usada como um indicador para o crescimento global do biofilme. Mudanças estruturais são medidas atualmente ou usando a identificação de espécies tradicionais com microscopia de luz ou com técnicas baseadas em nucleotídeos (por exemplo, desnaturação de eletroforese em gel de gradiente (DGGE), espaçador intergênica ribosomal automatizado análise (ARISA), metagenômica)10,11,12. Esses métodos fornecem informações mas são demorados para executar, ou exigem conhecimento específico ou ainda em desenvolvimento. Finalmente, novos métodos para a avaliação de substâncias poliméricas extracelulares (EPS)13,14 e o biofilme arquitetura1, ao mesmo tempo sensível, são de baixa produtividade e ainda não foram desenvolvidos para efeitos de controlo.
É evidente que para uma completa caracterização de biofilmes de água doce, é necessário combinar diversos métodos, que fornecem insights sobre a função de biofilme, composição e arquitetura. Para monitoramento ambiental, por outro lado, um método rápido e sensível que é capaz de detectar alterações no biofilme e permitir a interpretação biológica básica das mudanças a nível estrutural e funcional é necessário.
Temos desenvolvido um novo método para caracterização da comunidade microbiana do componente fototróficas de biofilmes de fluxo (perifíton), que é rápido o suficiente para fins de fiscalização e ao mesmo tempo fornece informações suficientes sobre a comunidade de biofilme estrutura para permitir a interpretação biológica15. Ele é baseado na citometria de fluxo de célula única (FC) de amostras de biofilme e juntamente com visualização computacional e fornece informações sobre propriedades óticas e fluorescentes do biofilme sobre o nível de célula única.
O fluxo de trabalho após a amostragem de biofilme consiste em preparação da amostra na forma de sonication, fixação e baseado no tamanho de filtragem das amostras seguidas por avaliar a amostra por citometria de fluxo. Os dados adquiridos fornecem informações sobre as várias características de celulares em uma única medida: granulometria, densidade, teor de pigmento, abiótico conteúdo (por exemplo, microplastics) no biofilme. Este conjunto de dados é que analisado através de visualização computacional usando visual vizinho estocástico incorporação (viSNE)16, que permite rápida e fácil interpretação dos dados. Embora algumas semanas são necessárias para configurar e otimizar o método, uma vez configurado, leva apenas algumas horas da coleta das amostras de biofilme para interpretação dos resultados.
As principais vantagens do método apresentado sobre os outros são a velocidade de análise e conteúdo de informação de alta. Além disso, as amostras podem ser armazenadas durante várias semanas após a coleta, sem perda da sua óptica e propriedades de fluorescência. Isso pode ser muito útil quando a caracterização de um grande número de amostras é necessária, tais como a amostragem de grandes estudos ou programas de Biomonitoramento, mas também pode fornecer uma quantidade substancial de informações em pequenos estudos exploratórios.
O protocolo apresentado baseia-se na análise do fluxo cytometric de biofilmes fototróficas (perifíton) coletado de diferentes locais de um fluxo. Muitos passos do protocolo, por exemplo, a seleção de locais adequados para fins de fiscalização, dependem os objetivos da pesquisa e, portanto, não podem ser prescritos. Outros permitem menos liberdade e exigem que o protocolo é seguido de perto, isto torna-se clara no Protocolo detalhado abaixo.
O protocolo começa com a seleção de sites para monitoramento ambiental baseado em biofilme. O próximo passo é configurar o citômetro de fluxo (FC), para que suas medidas permitem discriminação entre diferentes organismos fototróficas vivendo em biofilmes no ambiente monitorado. Isto é realizado através da recolha de amostras de biofilme de sites, identificando as propriedades fluorescentes de diferentes espécies presentes no biofilme e Configurando o citômetro de fluxo com lasers e filtros que permitem a medição com o apropriado óptica comprimentos de onda. Uma vez que o FC foi o set-up, os biofilmes podem ser coletadas de sites periodicamente, as propriedades ópticas e fluorescentes das partículas presentes no biofilme medida por citometria de fluxo e os dados analisados pelo visual de cluster única. Para melhor interpretação dos resultados, é possível construir uma base de referência FC de espécies locais de biofilme-vivo e seus fenótipos e usar o banco de dados para identificar diferentes taxonomias nos dados de FC. Validação é possível através de fluorescência-baseado classificação dos identificados aglomerados de células únicas usando FACS e baseado em microscopia identificação taxonômica das espécies presentes. Um esquema do protocolo é dada na Figura 1.
O protocolo descrito acima é relativamente simples de implementar. No entanto, enquanto as configurações padrão apresentados foram mostradas para ser apropriado para todos fototróficas biofilme testado até agora, otimização (conforme descrito no protocolo) é necessária para maximizar as informações obtidas com o método. Com efeito, as propriedades ópticas e fluorescentes de biofilmes podem variar, dependendo de condições ambientais (temporada, temperatura, composição química da água)…
The authors have nothing to disclose.
O trabalho apresentado foi apoiado por uma bolsa de Ambizione SNF (PZ00P2_142533) e uma bolsa de investigação Velux (Amplebig). Gostaríamos de agradecer a ajuda com o trabalho experimental de Bettina Wagner.
Multimeter | WTW | MultiLine 3620 IDS | For measuring temperature, pH, dissolved oxygen |
Ultrasonic cleaner | VWR International | 97043-986 | Tank dimesions: 15*14*10 cm |
Flow cytometer | Beckman Coulter | Gallios | Lasers: 405, 488 and 638 nm. Filters bands in Supplementary Table 11. Sgier et, Nat Comm, 2016. |
Plate reader | Tecan | Infinite M200 | used for selecting appropriate setting of the FC |
Cell sorter | Beckman Coulter | MoFlo Astrios | Settings in Supplementary Table 12. Sgier et, Nat Comm, 2016. |
Fluorescence microscope | Zeiss | Axiovert 135 | Zeiss EC Plan-Neofluar 40x/0.75 objective |
SOFTWARE | |||
Matlab | MathWorks | R2013a | software for numerical computing |
CYT | Dana Pe'er Lab | Version 1.1 | free interactive visualization tool for analysis of cytometry data |