Durchflusszytometrie in Kombination mit visuellen clustering bietet eine einfach zu bedienende und schnelle Methode zur Untersuchung von aquatischer Biofilms. Biofilm-Charakterisierung, Erkennung von Veränderungen in der Struktur der Biofilm-Gemeinschaft und die Detektion von abiotischen Partikeln eingebettet im Biofilm einsetzbar.
Biofilme sind dynamische Konsortien von Mikroorganismen, die eine Schlüsselrolle in Süßwasser-Ökosystemen spielen. Durch die Veränderung ihrer Gemeinschaftsstruktur, Biofilmen schnell auf Veränderungen der Umwelt reagieren und können somit als Indikatoren für die Qualität des Wassers verwendet werden. Derzeit basiert Biofilm Bewertung meist auf integrative und funktionalen Endpunkte wie photosynthetische oder Atemwege Tätigkeit, die keine Informationen über die Struktur der Biofilm-Gemeinschaft bieten. Durchflusszytometrie und computergestützte Visualisierung bieten eine alternative, sensibel und leicht zu bedienende Methode zur Beurteilung der Gemeinschaft Zusammensetzung, insbesondere von den photoautotrophen Teil von Süßwasser Biofilmen. Es erfordert nur grundlegende Probenvorbereitung, nach deren Ablauf die gesamte Probe durch das Durchflusszytometer ausgeführt ist. Die einzelligen optische und fluoreszierende Informationen wird für computergestützte Visualisierung und biologischen Interpretation verwendet. Die wichtigsten Vorteile gegenüber anderen Methoden sind die Geschwindigkeit der Analyse und der hohe Informationsgehalt Natur. Durchflusszytometrie liefert Informationen über verschiedene Zell- und Biofilm Eigenschaften in einer einzigen Messung: Partikelgröße, Dichte, Pigmentanteil, abiotische Inhalte in den Biofilm und groben taxonomische Informationen. Jedoch bietet es keine Informationen über Zusammensetzung der Biofilm auf Artniveau. Wir sehen hohes Potential bei der Verwendung der Methode für die Umweltüberwachung aquatischer Ökosysteme und als erste Biofilm Evaluation Schritt, die stromabwärts informiert detaillierte Untersuchungen durch ergänzende und genauere Methoden.
Biofilme sind dynamische Konsortien von Mikroorganismen, die eine in Süßwasser-Ökosystemen, Primärproduktion Schlüsselrolle, nährstoffkreisläufe und Wasseraufbereitung bis hin zu beeinflussen die Verteilung der Mikroorganismen und ihrer Artenvielfalt des Ökosystems 1. wenn Biofilme an sich verändernde Umweltbedingungen oder Stressoren, wie Chemikalien, ausgesetzt sind rückt die Gemeinschaftsstruktur schnell toleranter Arten2,3. Ihre hohe Empfindlichkeit verwandelt sich Biofilme in attraktive Modellsysteme für ökologische Überwachung4, jedoch keine der aktuellen Methoden perfekt geeignet ist, um die Dynamik einer Biofilm-Gemeinschaft tatsächlich in eine schnelle und einfache Weise zu verfolgen.
Die häufig verwendete Satz von Methoden zur Charakterisierung von Biofilmen besteht aus der Messung der funktionellen und strukturellen Endpunkte. Auf der Ebene der gesamten Gemeinschaft enthält Photosynthese und Atmung sowie die Aktivität extrazellulärer Enzyme Informationen über den Funktionszustand der Biofilm5,6,7,8 ,9. Biomasse-Abgrenzung dient als Indikator für Gesamtwachstum Biofilm. Strukturelle Veränderungen sind derzeit entweder mit traditionellen speziesidentifizierung mit Lichtmikroskopie oder Nukleotid-basierte Techniken (z.B.Denaturierenden Gradienten Gelelektrophorese (DGGE), automatisierte ribosomale intergenetischer Distanzstück gemessen. Analyse (ARISA), Metagenomik)10,11,12. Diese Methoden informieren, sondern sind zeitaufwendig, durchzuführen, oder erfordern spezielle Kenntnisse oder sind noch in der Entwicklungsphase. Schließlich neue Methoden zur Bewertung der extrazelluläre Polymere Substanzen (EPS)13,14 und der Biofilm Architektur1, während der empfindlichen, sind niedrig-Durchsatz und noch nicht in Richtung entwickelt worden Überwachungszwecke.
Es ist offensichtlich, dass für eine vollständige Charakterisierung von Süßwasser Biofilmen, es notwendig ist, verschiedene Methoden, die Einblick in die Biofilm-Funktion, die Zusammensetzung und die Architektur zu kombinieren. Für die Umweltüberwachung, auf der anderen Seite ist eine schnelle und empfindliche Methode, die ist erkennen Veränderungen im Biofilm und ermöglichen grundlegende biologische Deutung der Verschiebungen auf die funktionellen und strukturellen Ebene, erforderlich.
Wir haben eine neue Methode zur Charakterisierung der mikrobiellen Gemeinschaft der phototrophe Komponente von Stream Biofilmen (Periphyton), entwickelt, ist schnell genug für Überwachungszwecke und gleichzeitig ausreichend informiert über den Biofilm-Gemeinschaft Struktur, biologische Deutung15zu ermöglichen. Es basiert auf einzellige Durchflusszytometrie (FC) der Biofilm Proben und gepaart mit computergestützten Visualisierung und bietet Informationen über optische und fluoreszierende Eigenschaften des Biofilms auf der Ebene der einzelnen Zelle.
Der Workflow nach der Probenahme Biofilm besteht der Probenvorbereitung in Form von Beschallung, Fixierung und Größe-basierte Filterung der Proben, gefolgt von der Beurteilung der Probenmaterials durch Durchflusszytometrie. Die erfassten Daten geben Auskunft über mehrere zellulären Eigenschaften in einer einzigen Messung: Partikelgröße, Dichte, Pigmentanteil, abiotische Inhalte (z. B. mikroplastik) im Biofilm. Dieser Satz von Daten ist als über computergestützte Visualisierung mit visuellen stochastische Nachbar einbetten (ViSNE)16, ermöglicht schnelle und einfache Interpretation der Daten analysiert. Obwohl ein paar Wochen erforderlich sind, um einrichten und optimieren die Methode einmal eingerichtet, es dauert nur wenige Stunden von den Biofilm Probenahmen zur Interpretation der Ergebnisse.
Die wichtigsten Vorteile der vorgestellten Methode gegenüber anderen sind die Geschwindigkeit der Analyse und hohen Informationsgehalt. Darüber hinaus können die Proben für mehrere Wochen nach der Entnahme ohne Verlust von ihren optischen und Fluoreszenzeigenschaften gespeichert werden. Dies kann sehr nützlich sein bei der Charakterisierung von einer großen Anzahl von Proben ist erforderlich, wie z. B. große Stichproben Studien oder Biomonitoring-Programme, sondern bieten auch eine beträchtliche Menge an Informationen in kleinere explorative Studien.
Die vorgestellte Protokoll basiert auf Fluss-durchflusszytometrischen Analyse von phototrophe Biofilmen (Periphyton) von verschiedenen Standorten eines Baches gesammelt. Viele Schritte des Protokolls, z. B. die Auswahl der Standorte für Überwachungszwecke, die Ziele der Forschung abhängig und daher können nicht verordnet werden. Andere weniger Freiheit ermöglichen und erfordern, dass das Protokoll aufmerksam verfolgt, wird in das ausführliche Protokoll unten deutlich.
Das Protokoll beginnt mit der Auswahl der Standorte für Biofilm-basiertes Umweltmonitoring. Der nächste Schritt ist Setup Durchflusszytometer (FC), so dass seine Messungen Diskriminierung zwischen verschiedenen phototrophe Organismen in Biofilmen in der überwachten Umgebung ermöglichen. Dies erfolgt durch das Sammeln von Biofilm-Proben von den Sites, identifizieren die fluoreszierenden Eigenschaften der verschiedenen Arten in den Biofilm und Einrichten der Durchflusszytometer mit Laser und Filter, die Messung an den entsprechenden optischen aktivieren Wellenlängen. Nachdem die FC Aufbau wurde, können Biofilme werden gesammelt von den Seiten in regelmäßigen Abständen die optischen und fluoreszierenden Eigenschaften der einzelnen Partikel in den Biofilm-Durchflusszytometrie gemessen und die Daten analysiert durch visuelle clustering. Für bessere Interpretation der Ergebnisse ist es möglich, eine FC-Referenzdatenbank von lokalen Biofilm-Lebewesen und ihre Phänotypen zu bauen und die Datenbank verwenden, um verschiedene Taxonomien in den FC-Daten zu identifizieren. Die Validierung ist möglich durch Fluoreszenz basierende Sortierung der identifizierten Cluster von Einzelzellen mit FACS und Mikroskopie-basierte taxonomische Identifizierung der vorliegenden Art. Eine schematische Darstellung des Protokolls ist in Abbildung 1aufgeführt.
Das oben beschriebene Protokoll ist relativ einfach zu implementieren. Während die vorgestellten Standardeinstellungen für alle phototrophe Biofilm getestet bisher geeignet gezeigt wurden, ist jedoch Optimierung (wie im Protokoll beschrieben) notwendig, die Informationen aus der Methode zu maximieren. In der Tat, die optischen und fluoreszierenden Eigenschaften von Biofilmen können variieren, abhängig von den Umgebungsbedingungen (Jahreszeit, Temperatur, chemische Zusammensetzung des Wassers)1…
The authors have nothing to disclose.
Die vorgestellte Arbeit wurde von einem SNF Ambizione Fellowship (PZ00P2_142533) und ein Velux-Forschungsstipendium (Amplebig) unterstützt. Wir möchten Bettina Wagner für Hilfe bei der experimentellen Arbeit zu danken.
Multimeter | WTW | MultiLine 3620 IDS | For measuring temperature, pH, dissolved oxygen |
Ultrasonic cleaner | VWR International | 97043-986 | Tank dimesions: 15*14*10 cm |
Flow cytometer | Beckman Coulter | Gallios | Lasers: 405, 488 and 638 nm. Filters bands in Supplementary Table 11. Sgier et, Nat Comm, 2016. |
Plate reader | Tecan | Infinite M200 | used for selecting appropriate setting of the FC |
Cell sorter | Beckman Coulter | MoFlo Astrios | Settings in Supplementary Table 12. Sgier et, Nat Comm, 2016. |
Fluorescence microscope | Zeiss | Axiovert 135 | Zeiss EC Plan-Neofluar 40x/0.75 objective |
SOFTWARE | |||
Matlab | MathWorks | R2013a | software for numerical computing |
CYT | Dana Pe'er Lab | Version 1.1 | free interactive visualization tool for analysis of cytometry data |