Summary

成人脑组织切片中钾离子选择性电极的制备、检测及应用

Published: May 07, 2018
doi:

Summary

钾离子有助于细胞的静止膜电位, 胞外 K+浓度是细胞兴奋性的重要调节因子。我们描述如何制作, 校准和使用单 K+选择性电极。使用此类电极可以测量成年海马切片中电诱发的 K+浓度动态。

Abstract

钾离子对细胞的静止膜电位有显著的促进作用, 因此胞外 K+浓度是细胞兴奋性的重要调节因子。细胞外 K+的浓度改变会影响静止膜电位和细胞兴奋性, 方法是将闭合的、开放的和灭活状态之间的平衡转移到有作用电位的电压依赖离子通道上。启动和传导。因此, 直接测量健康和患病状态下的胞外 K+动态是很有价值的。在这里, 我们描述如何制作, 校准和使用单 K+选择性电极。我们将它们部署在成人海马脑切片中, 以测量电诱发 K+浓度动态。明智地使用此类电极是评估细胞和生物物理机制, 以控制神经系统细胞外 K+浓度所需的工具套件的重要组成部分。

Introduction

钾离子浓度在大脑中受到严格的调节, 它们的波动对所有细胞的静止膜电位有很大的影响。根据这些重要的贡献, 生物学的一个重要目标是确定细胞和生物物理机制, 用于在身体的不同器官的细胞外空间中严格调节 K+的浓度1,2. 这些研究的一个重要要求是能够准确地测量 K+浓度。虽然在健康和患病状态下, 许多有助于大脑中钾稳态的成分已经被确认为3,45, 由于专业性质的原因, 进一步的进展已经减慢。制备离子选择性电极钾的方法。微电极传感器表示用于测量 K+浓度体外、组织切片和体内中的金标准。

用于 k+监视的更新方法正在使用光学传感器进行开发, 但这些检测不到与生物学相关的 k+浓度范围, 也未在生物系统中进行全面审查, 尽管初步结果显示有希望的6,7,8。与光学传感器相比, 电极从根本上被限制为离子的点源测量, 虽然电极阵列可以改善空间分辨率9。本文重点介绍了用于监测 K+动力学的单桶微电极传感器。

在这项工作中, 我们报告详细的逐步过程, 使 K+选择性电极, 使用基于 valinomycin 的钾载体, 允许高度选择性 (104折叠 k+到 Na+选择性) k+在膜上运动10。valinomycin 是一种自然发生的多肽, 它充当 k+渗透性孔隙, 并使 k+的流量降低到其电化学梯度。我们还描述了如何校准电极, 如何存储和使用它们, 最后如何部署它们来测量成年小鼠海马脑切片中的 K+浓度动态。使用此类电极和基因修饰小鼠缺乏特定的离子通道来调节胞外 K+动力学应该揭示神经系统使用的细胞机制来控制 k 的环境浓度。在胞外环境中的+

Protocol

所有动物实验都是按照美国国家卫生研究院的实验室动物护理和使用指南进行的, 并得到了加州大学洛杉矶分校校长动物研究委员会的批准。所有的老鼠都是在12小时的昏暗环境中使用食物和水的ad 随意。所有动物都是健康的, 没有明显的行为变化, 没有参与以前的研究, 并在光周期中牺牲。实验数据从成年小鼠 (6-8 周大的所有实验) 中采集。 1. K+选择性电极的制备…

Representative Results

对于细胞外 K+的选择性测量, 我们通过硅烷化清洁硼硅酸盐玻璃吸管(图 1A), 制备了具有疏水性层的离子选择性电极。此涂层使包含 valinomycin 的 k+载体在电极尖端上休息, 并且仅允许 k+通量通过在电极尖端的窄开口 (图 1B)。在用回填盐水溶液和 K+载体启动电极后, 可以对电极进行测试, 使其快速、?…

Discussion

我们在这里描述的方法使我们能够评估 K+动力学, 以响应电刺激的谢弗络在急性海马切片的成年小鼠。我们准备 K+离子选择性电极的方法类似于前面描述的过程12,13,14,15。然而, 这种方法优于替代电极配置, 因为它是快速和复杂的准备 K+选择性电极。在适当的校准后, 发现这些电…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Khakh 实验室得到了 NIH MH104069 的支持。这个实验室是由 NIH NS030549 支持的。J.C.O. 感谢 NIH T32 神经集成电路训练补助金 (NS058280)。

Materials

Vibratome DSK Microslicer Zero 1
Mouse: C57BL/6NTac inbred mice Taconic Stock#B6
Microscope Olympus BX51
Electrode puller Sutter P-97
Ag/AgCl ground pellet WPI EP2
pCLAMP10.3 Molecular Devices n/a
Custom microfil 28G tip World precision instruments CMF28G
Tungsten Rod A-M Systems 716000
Bipolar stimulating electrodes FHC MX21XEW(T01)
Stimulus isolator World precision instruments A365
Grass S88 Stimulator Grass Instruments Company S88
Borosilicate glass pipettes World precision instruments 1B150-4
A to D board Digidata 1322A Axon Instruments
Signal Amplifier Multiclamp 700A or 700B Axon Instruments
Headstage CV-7B Cat 1 Axon Instruments
Patch computer Dell n/a
Sodium Chloride Sigma S5886
Potassium Chloride Sigma P3911
HEPES Sigma H3375
Sodium Bicarbonate Sigma S5761
Sodium Phosphate Monobasic Sigma S0751
D-glucose Sigma G7528
Calcium Chloride Sigma 21108
Magnesium Chloride Sigma M8266
valinomycin Sigma V0627-10mg
1,2-dimethyl-3-nitrobenzene Sigma 40870-25ml
Potassium tetrakis (4-chlorophenyl)borate Sigma 60591-100mg
5% dimethyldichlorosilane in heptane Sigma 85126-5ml
TTX Cayman Chemical Company 14964
Hydrochloric acid Sigma H1758-500mL
Sucrose Sigma S9378-5kg
Pipette Micromanipulator Sutter MP-285 / ROE-200 / MPC-200
Objective lens Olympus PlanAPO 10xW

References

  1. McDonough, A. A., Youn, J. H. Potassium homeostasis: The knowns, the unknowns, and the health benefits. Physiol Bethesda Md. 32 (2), 100-111 (2017).
  2. Hille, B. . Ion channels of excitable membranes. , 507 (2001).
  3. Kofuji, P., Ceelen, P., Zahs, K. R., Surbeck, L. W., Lester, H. A., Newman, E. A. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: Phenotypic impact in retina. J Neurosci. 20 (15), 5733-5740 (2000).
  4. Sibille, J., Dao Duc, K., Holcman, D., Rouach, N. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comput Biol. 11 (3), e1004137 (2015).
  5. Tong, X., et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci. 17 (5), 694-703 (2014).
  6. Datta, D., Sarkar, K., Mukherjee, S., Meshik, X., Stroscio, M. A., Dutta, M. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor. Nanotechnology. 28 (32), 325502 (2017).
  7. Bandara, H. M. D., et al. Palladium-Mediated Synthesis of a Near-Infrared Fluorescent K+ Sensor. J Org Chem. 82 (15), 8199-8205 (2017).
  8. Depauw, A., et al. A highly selective potassium sensor for the detection of potassium in living tissues. Chem Weinh Bergstr Ger. 22 (42), 14902-14911 (2016).
  9. Machado, R., et al. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain. Biosensors. 6 (4), (2016).
  10. Rose, M. C., Henkens, R. W. Stability of sodium and potassium complexes of valinomycin. Biochim Biophys Acta BBA – Gen Subj. 372 (2), 426-435 (1974).
  11. Ammann, D., Chao, P., Simon, W. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett. 74 (2), 221-226 (1987).
  12. Amzica, F., Steriade, M. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci. 20 (17), 6648-6665 (2000).
  13. Amzica, F., Steriade, M. The functional significance of K-complexes. Sleep Med Rev. 6 (2), 139-149 (2002).
  14. MacVicar, B. A., Feighan, D., Brown, A., Ransom, B. Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes. Glia. 37 (2), 114-123 (2002).
  15. Chever, O., Djukic, B., McCarthy, K. D., Amzica, F. Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci. 30 (47), 15769-15777 (2010).
  16. Hall, D. G. Ion-selective membrane electrodes: A general limiting treatment of interference effects. J Phys Chem. 100 (17), 7230-7236 (1996).
  17. Haack, N., Durry, S., Kafitz, K. W., Chesler, M., Rose, C. R. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue. J Vis Exp. (103), e53058 (2015).
  18. Larsen, B. R., MacAulay, N. Kir4.1-mediated spatial buffering of K(+): Experimental challenges in determination of its temporal and quantitative contribution to K(+) clearance in the brain. Channels Austin Tex. 8 (6), 544-550 (2014).
  19. Mei, L., et al. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proceedings of the National Academy of Sciences. 115, 4276-4281 (2018).

Play Video

Cite This Article
Octeau, J. C., Faas, G., Mody, I., Khakh, B. S. Making, Testing, and Using Potassium Ion Selective Microelectrodes in Tissue Slices of Adult Brain. J. Vis. Exp. (135), e57511, doi:10.3791/57511 (2018).

View Video