Qui usiamo l’elettroforesi del gel dell’agarosi semi-denaturante bidimensionale per confermare la presenza di amiloide-come le fibre di dimensioni eterogenee ed escludere la possibilità che l’eterogeneità di dimensioni è dovuto dissociazione delle fibre amiloidi durante il gel processo in esecuzione.
Fibre amiloidi o amiloide-come sono stati associati con molte malattie umane e ora stanno scoprende sarà importante per molte vie di segnalazione. La capacità di rilevare prontamente la formazione di queste fibre nelle varie circostanze sperimentali è essenziale per capire la loro funzione potenziale. Molti metodi sono stati utilizzati per rilevare le fibre, ma non senza alcuni inconvenienti. Ad esempio, la microscopia elettronica (EM), o colorazione con rosso Congo o Thioflavin T spesso richiede purificazione delle fibre. D’altra parte, elettroforesi su gel di agarosio detergente semi-denaturante (SDD-età) permette la rilevazione delle fibre amiloide-come SDS-resistente in estratti delle cellule senza purificazione. Inoltre, permette il confronto tra la differenza di dimensioni delle fibre. Ancora più importante, può essere utilizzato per identificare le proteine specifiche nelle fibre mediante Western blotting. È molto meno tempo e più facilmente accessibile a un più ampio numero di laboratori. SDD-età risultati mostrano spesso variabile grado di eterogeneità. Solleva la questione se parte dell’eterogeneità deriva dalla dissociazione della proteina complessa durante l’elettroforesi in presenza di SDS. Per questo motivo, abbiamo impiegato una seconda dimensione di SDD-età per determinare se l’eterogeneità di dimensioni visto in SDD-età è davvero un risultato di fibra eterogeneità in vivo e non il risultato di degradazione o di dissociazione di alcune delle proteine elettroforesi. Questo metodo permette la veloce, qualitativa conferma che le fibre amiloidi o amiloide-come non sono parzialmente dissociando durante il processo di SDD-età.
La formazione di fibre amiloidi a causa di misfolding proteico a lungo è stata conosciuta per svolgere un ruolo in condizioni patologiche come il morbo di Alzheimer, morbo di Parkinson e la malattia di Huntington1. Più recentemente, la formazione di fibre amiloidi o amiloide-come è stata indicata per essere una parte delle vie di segnalazione in esseri umani, compreso durante la risposta immunitaria innata anti-virale2 e necroptosis3,4e negli organismi inferiori come lievito5,6. Pertanto, la capacità di rilevare queste fibre in laboratorio è importante. Attualmente, ci sono tre modi principali per rilevare amiloide e amiloide-come le fibre: l’uso di coloranti, EM e SDD-età.
L’uso di coloranti, come il rosso Congo o Tioflavina T, offre il vantaggio di essere veloce e facilmente rilevabile mediante microscopia o spettroscopia7. Tuttavia, il rilevamento da microscopia, nel caso di colore rosso di Congo, non fornisce nessuna specificità sulle proteine comprendono le fibre, o la dimensione delle fibre. Analogamente, l’uso della spettroscopia per rilevare associazione rosso Congo o Thioflavin T complessi proteici fornisce solo un risultato positivo o negativo.
EM fornisce prove inconfutabili della presenza di fibre e anche informazioni quantitative sulla fibra di lunghezza e diametro8. Tuttavia, questo metodo richiede purificazione molto rigorose. Inoltre, EM è una tecnica specializzata che utilizza apparecchiature costose.
SDD-età è stato utilizzato per rilevare SDS-resistente complessi proteici di Dalton mega compreso amiloide o amiloide-come le fibre. Offre molti vantaggi. In primo luogo, esso non richiede la purificazione delle fibre ed è facile da peform9. In secondo luogo, fornisce informazioni qualitative circa le dimensioni delle fibre, tra cui la dimensione relativa e la quantità di heterogenicity di fibra. Infine, poiché macchiarsi occidentale può essere eseguita dopo l’elettroforesi, è facile rilevare la presenza di tutta la proteina per la quale c’è un anticorpo, anche se va notato che poiché SDD-età è semi-denaturante, alcuni epitopi possono rimanere nascosta che complica la rilevazione di anticorpi.
Recentemente, chinasi di proteina d’interazione del ricevitore 1 (RIPK1) e 3 (RIPK3) sono stati segnalati alle fibre amiloidi forma per servire come piattaforme di segnalazione durante necroptosis, una forma programmata di necrosi3. Studiando queste fibre, il nostro laboratorio ha dimostrato che un’altra proteina associata necroptosis, miscelati di chinasi di lignaggio dominio simile (MLKL), formata anche amiloide-come le fibre4. Tuttavia, su esame con SDD-età, la dimensione delle fibre MLKL apparso distinta dalle fibre RIPK1 e RIPK3, che è comparso identiche tra loro (Figura 1). Questo è stato inaspettato perché è ben noto che MLKL si lega al RIPK1/RIPK3 per formare la necroptosis segnalazione complesso denominato il necrosome10.
Ci sono almeno due spiegazioni. In primo luogo, due totalmente distinte amiloide-come le fibre possono formarsi durante necroptosis, contenente un RIPK1/RIPK3 e l’altro contenente MLKL. In secondo luogo, un solo tipo di amiloide-come le fibre che contenenti RIPK1/RIPK3/MLKL possono formarsi durante il necroptosis, ma l’associazione di MLKL con le altre proteine è abbastanza debole che dissocia in epoca di SDD.
Per risolvere questo problema, vi proponiamo di eseguire un bidimensionale (2D) SDD-età. SDD-età-stable amiloide o amiloide-come le fibre avrà lo stesso pattern di migrazione durante l’elettroforesi di prima e seconda dimensione. Questo sarà rilevabile dopo trasferimento le proteine ad una membrana e lo svolgimento di un Western blot. Stabile fibre esporrà un reticolo diagonale affilato. Qualsiasi deviazione da questo vorrei suggerire che le fibre subiscono cambiamenti dovuto l’elettroforesi di SDS.
L’aspetto più critico della 2D SDD-età è che le condizioni di elettroforesi sono gli stessi per la prima e la seconda dimensione. La capacità di rilevare una forte linea diagonale a 45° (che indica che non si è verificato nessun dissociazione o degradazione) dipende le fibre la migrazione in maniera identica sia durante electrophoreses. Utilizzando diverse condizioni, ad esempio cambiando la tensione o la lunghezza della fase di esecuzione, nasconderanno questi risultati. Inoltre, come è il caso per tradizionale 1…
The authors have nothing to disclose.
Questo lavoro è supportato da una borsa di studio per S.H.-A. dal NIH/NCATS (TL1TR001104), una fondazione di Welch concedere (I-1827) e una sovvenzione di R01 da NIGMS (RGM120502A) a Z.W. Z.W. è lo studioso di Linthicum Murchison Virginia nella ricerca medica e prevenzione del cancro e Research Institute del Texas Scholar (R1222).
gel electrophoresis unit | Fisher | HE99XPRO | appratus for gel running. |
agrose | VWR | 97062-250 | For agarose gel. |
paper tower | Fisher | 19-120-2484 | for transfering |
filter paper | VWR | 21427-386 | for transfering |
PVDF membrane | Bio-Rad | 162-0177 | for transfering |
blocking milk powder | Bio-Rad | 1706404XTU | for blocking in Western blot |
MLKL antibody | Genetex | GTX107538 | rabbit anti-MLKL antibody |
RIPK1 antibody | BD Biosciences | 610459 | mouse anti-RIPK1 antibody |
RIPK3 antibody | gift from Dr. Xiaodong Wang | rabbit anti-RIPK3. See refenence 11. | |
anti-Rabbit-HRP | Sigma | A6154 | secondary antibody |
ECL | Fisher | WBKLS0500 | Western chemiluminescent HRP substrate |
X-ray film | Fisher | F-BX810 | for Western blot result |
DMEM | Sigma | D6429 | for cell culture |
fetal bovine serum | Sigma | F4135 | for cell culture |
penicilin-streptomycin | Sigma | P4333 | for cell culture |
Trypsin solution | Sigma | T4049 | for cell culture |
PBS for tissue culture | Sigma | D8662 | for cell culture |
recombinant TNF | made in our lab | for inducing necroptosis. See reference 11. | |
smac-mimetic | gift from Dr. Xiaodong Wang | for inducing necroptosis. See reference 11. | |
ZVAD-FMK | ApexBio | A1902 | for inducing necroptosis. See reference 11. |
Cell Counter | Bio-Rad | 1450102 | Model TC20; for counting cells |
Pierce™ BCA Protein Assay Kit | Thermo Scientific | 23225 | for measuring protein concentration in cell lysates |
Cell lifter | Fisher | 07-200-364 | to remove cells from dish |
Lysis Buffer (1 L) | 20 mL 1 M Tris pH 7.4 10 mL glycerol 30 mL 5 M NaCl 840 mL ddH2O 10 mL Triton-X100 (protease and phosphates inhibitors as desired) |
||
10X TAE (1 L) | 48.4 g Tris base 11.42 mL glacial acetic acid 20 mL 0.5M EDTA pH 8 ddH20 to 1 L |
||
4X SDD-AGE loading buffer (50 mL) | 5 mL 10X TAE 10 mL glycerol 4 mL 20% SDS 0.5 mL 10% bromophenol blue 31 mL ddH2O |
||
TBS Transfer Buffer (1 L) | 20 mL 1 M Tris pH 7.4 30 mL 5 M NaCl 950 mL ddH2O |
||
PBST Wash Buffer (1 L) | 100 mL 10xPBS 800 mL ddH2O 1 mL Tween20 |
||
10X PBS (10 L) | 800 g NaCl 20 g KCl 144 g Na2HPO4·2H2O 24 g KH2PO4 add ddH2O to 10 L |