Хроматин цикла играет значительную роль в регуляции генов; Однако были не технологических достижений, которые позволяют для селективного и обратимые изменения хроматина петель. Здесь мы описываем мощную систему для повторной организации хроматина цикла с помощью ТРИФОСФАТЫ dCas9 (CLOuD9), продемонстрировал избирательно и обратимо модуляции экспрессии генов в целевых локусов.
Недавние исследования показали, ясно, что на большие расстояния, трехмерные хроматина, цикл взаимодействия играть значительную роль в регуляции экспрессии генов, но ли цикл отвечает за или в результате изменения в экспрессии генов равно неизвестно. До недавнего времени, как хроматина цикл влияет на регулирование активности генов и клеточную функцию был довольно неоднозначной, и ограничения в существующие методы для манипулирования эти структуры не позволяют углубленное изучение этих взаимодействий. Чтобы устранить эту неопределенность, мы инженерии метод для селективного и обратимым хроматина цикл повторной организации с помощью ТРИФОСФАТЫ dCas9 (CLOuD9). Динамизм CLOuD9 системы была продемонстрирована успешной локализации CLOuD9 конструкций целевой геномной локусов для модуляции местных хроматина конформации. Важно отметить, что подтверждено также возможность обратить вспять индуцированных контакт и восстановления конформации эндогенного хроматина. Модуляции экспрессии генов с помощью этого метода устанавливает способности регулировать экспрессию клеточных генов и подчеркивает огромный потенциал для применения этой технологии в создании стабильной de novo хроматина петли, которые существенно влияют на ген выражение в контексте рака и развития.
Отношения между хроматина, складывающиеся в ядре и конкретные организации генома собрала значительный интерес в последние годы, как было показано, быть тесно связан с ген выражение1,2. Хотя точные отношения между генной активности и модуляции структуры хроматина остается неясным, было предположить, что взаимодействия между хромосомной контактов в результате динамический трехмерный хроматина Организации служат Джин регуляционная функция3. Действительно такой эффект хорошо продемонстрирована на Локус гена глобина человека, где локус контроля региона (LCR) регулирует активность генов Глобин развивающих определенным образом, создавая петлю хроматина между двумя регионами4. Однако в этом и других регионах, он мутноват ли цикл хроматина причиной или следствием изменения в экспрессии генов.
До сих пор остаются нерешенными проблемы в изучении этого явления. Например другие попытки заставить хроматина петли участие изменения в линейной последовательности ДНК или сложных процедур, требующих обилие фоновых знаний по конкретным элементам, которые облегчают цикл5,,6, 7,8. Кроме того в то время как предыдущие работы предположил, что хроматина петли диск экспрессии генов в контексте конкретных и ограниченных7,8, уровень, на котором хроматина цикл влияет на транскрипции глобально является неопределенным. Хотя постоянно в последние годы вырос интерес в воздействии долгосрочных циклов на экспрессию генов, сохраняются нерешенные вопросы о создании и сохранении хроматина контактов для изменения активности гена.
Технологии, которые мы инженерии использует нуклеиназы кластерных регулярно interspaced короткие палиндром повторяется (ТРИФОСФАТЫ) – ТРИФОСФАТЫ – связанные протеина 9 (dCas9), для широко применимым таргетинга любой геномной локусов9. Эта технология исключает сложные вопросы, связанные с внесением изменений в линейной последовательности ДНК и доступен без существенных предварительных знаний о конкретных циклов компонентов. Прежде всего этот инструмент является универсальным и широко применимые к петли хроматина, признается в области развития, а также различных заболеваний, таких как рак. Доказывается, что власть CLOuD9 обратимого изменения структуры петли для эффективно модуляции экспрессии генов.
The Most критические шаги в CLOuD9 хроматина циклических являются: 1) проектирование или с использованием правильного оформления, 2) изменение средств массовой информации ежедневно на преобразованы CLOuD9 клетки, включая ABA или ДМСО, 3) поддержание свежесть Аба и 4) выполнения точной и тщательной оценки Хроматин конформации.
Пределы CLOuD9 главным образом проживают в способность разработать руководства к целевой области выбора. Руководство РНК выполняют важную задачу по локализации dCas9 компоненты в целевых регионах ДНК, чтобы быть димерной и эффективность руководства основаны на их конкретной целевой сайт. Без надлежащего gRNA компонентов CLOuD9, система не сможет сформировать обратимо индуцированной петли. Таким образом путем разработки нескольких руководств для каждого региона интерес и распространение руководства над регионом 250-1000 bp, по крайней мере один успешный гид будет обеспечиваться. Руководство Расположение также является неотъемлемой частью точные результаты. Важно избежать направляющие расположены в сайтов связывания фактор транскрипции или других критических регионов для предотвращения фон эффекты, такие как вверх или вниз регуляции транскрипции. Кроме того точное местоположение CLOuD9 конструкции слегка может повлиять транскрипции гена целевого объекта. Это подчеркивает важность тестирования нескольких пар руководств для каждого целевого региона, для выявления наиболее надежный пару для экспериментальных целей. Кроме того в каждой паре целевых регионах, CSA конструкции должны быть ориентированы с оформления для S. aureus, и CSP конструкции должны быть ориентированы с оформления для S. pyogenes для ориентации специфичности.
Чтобы обеспечить точные результаты и правильный димеризации, важно также поддерживать свежесть клеточной среды после трансдукции CLOuD9 конструкций. Ежедневно средства массовой информации изменения и добавлением свежей dimerizer (или управления) гарантирует, что дополнительные конструкции останется в близости и сохранить измененные хроматина конформации. Кроме того важно гарантировать ABA свежие и хранился надлежащим образом по данным производителя протокол (открыт в течение 6 месяцев, холодный, хранится защищенный от света) для получения достоверных результатов.
В частности ABA dimerizer для CLOuD9 был использован с ABI и пыль димеризации белков, вместо того, чтобы более широко использовать FRB и FKBP системы. Необходимость rapalog для FRB/FKBP системы будет ограниченную применимость CLOuD9, из-за токсичности для раковых клеток. Альтернативные системы ABI/PYL обойти это ограничение, эффективно позволяя CLOuD9 быть более широко усваиваемый.
Коллективно мы разработали CLOuD9, уникальные и надежные технологии, которая может принудительно но обратимо создать контакты между дальней цели геномной локусов. Через склонение хроматина петли, мы также продемонстрировать, что CLOuD9 могут быть использованы для изменения экспрессии генов в соответствующем контексте сотовой. Адаптируемость технология позволяет неограниченное исследование взаимодействия между любые два геномной локусов, без необходимости предварительного знания циклов регионов или зацикливание механизмов. Кроме того CLOuD9 уникальный продемонстрировали обратимости позволяет дальнейшее изучение механизмов циклы заболеваний и развития. Хотя было четко продемонстрировали на цель эффекты хроматина циклов, есть еще быть данных, предлагая понимание эффекты пробить циклов и последующее воздействие на петлях на целевой.
Наши данные показывает только несколько приложений для этого инструмента, но подразумевает крупные идею что хроматина соглашение свидетельствует о экспрессии генов. Наша технология может использоваться для изучения и раскрыть нюансы структуры хроматина в регуляции генов, тем самым улучшение общего понимания роли хроматина, складывающиеся в транскрипции генов. Лучше понять тонкости транскрипционный анализ динамики может возглавить процесс исследования и лечения рака, наследственных заболеваний и врожденных расстройств, в котором собственный хроматина Ассамблея несомненно изменяет выражение гена в20, 21,,22–23. Последующие работы, используя технологию CLOuD9 будет освещать дальнейшие сведения о расположении и динамика доменов хроматина и как они управляют, складные для поддержания стабильной ген выражение как развития, так и болезни.
The authors have nothing to disclose.
Мы благодарим H. Chang, т. Oro, S. Tavazoie, Флинн, P. Батиста, э. Кало и весь Ван лаборатория для технической поддержки и критических чтении рукописи. S.L.M. получило поддержку в этой работе через NSFGRF (DGE-114747), NDSEGF (FA9550-11-C-0028) и Национальный институт рака (1F99CA222541-01). K.C.W. поддерживается премию карьеры для ученых-медиков из Фонда Добро пожаловать Берроуз и Дональд е. и Делия б. Бакстер фонд факультета ученый.
RPMI 1640 media | Life Technologies | 11875-119 | For K562 cell culture |
DMEM media | Life Technologies | 11995-065 | 1X, for 293T cell culture |
lentiCRISPR v2 | Addgene plasmid | #52961 | For CLOuD9 plasmid development |
pRSV-Rev | Addgene plasmid | #12253 | For lentivirus production |
pMD2.G | Addgene plasmid | #12259 | For lentivirus production |
pMDLg/pRRE | Addgene plasmid | #12251 | For lentivirus production |
Lipofectamine 2000 | Thermo Fisher Scientific | 11668-019 | For lentivirus production |
anti-HA antibody | Cell Signaling | 3724 | For immunoprecipitation |
anti-Flag antibody | Sigma | F1804 | For immunoprecipitation |
DNeasy Blood and Tissue Kit | Qiagen | 69504 | For DNA extraction |
TRIzol | Life Technologies | 15596-018 | For RNA extraction |
RNeasy Kit | Qiagen | 74106 | For RNA extraction |
Superscript VILO | Life Technologies | 11754-050 | For cDNA |
SYBR Green I MasterMix | Roche | 4707516001 | For qPCR analysis |
Light Cycler 480II | Roche | For qPCR analysis | |
anti-H3K4me3 antibody | AbCam | ab8580 | For ChIP-qPCR |
anti-RNA Pol-II antibody | Active Motif | 61083 | For ChIP-qPCR |
EDTA free protease inhibitor | Roche | 11873580001 | For protein extraction |
4-12% Tris Glycine gel | Biorad | Any size, For western blot | |
anti-Rabbit HRP antibody | Santa Cruz | sc-2030 | For western blot |
anti-mouse HRP antibody | Cell Signaling | 7076S | For western blot |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000AKU | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000APE | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000FCJ | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | GEO | GSM1479215 | For ChIP-seq analysis |
Dynabeads Protein A for Immunoprecipitation | Thermo Fisher Scientific | 10001D | For immunoprecipitation |
Dynabeads Protein G for Immunoprecipitation | Thermo Fisher Scientific | 10004D | For immunoprecipitation |
RNA Clean & Concentrator-5 | Zymo Research | R1015 | For RNA purification |
Pierce 16% Formaldehyde Methanol-free | Thermo Fisher Scientific | 28908 | For crosslinking |
PX458 Plasmid | Addgene | 48138 | Suggested active Cas9 plasmid for gRNA cloning, but any active Cas9 plasmid will do |
QIAquick PCR Purification Kit | Qiagen | 28104 | For PCR purification |
FastDigest BsmBI | Thermo Fisher Scientific | FD0454 | For cloning guide RNAs |
FastAP | Thermo Fisher Scientific | EF0651 | For cloning guide RNAs |
10X FastDigest Buffer | Thermo Fisher Scientific | B64 | For cloning guide RNAs |
QIAquick Gel Extraction Kit | Qiagen | 28704 | For cloning guide RNAs |
10X T4 Ligation Buffer | NEB | B0202S | For cloning guide RNAs |
T4 PNK | NEB | M0201S | For cloning guide RNAs |
2X Quick Ligase Buffer | NEB | B2200S | For cloning guide RNAs |
Quick Ligase | NEB | M2200S | For cloning guide RNAs |
Buffers | |||
Farnham lysis buffer | 1% Tris-Cl pH 8.0, 1% SDS, 1% protease inhibitor water solution (non-EDTA), and 1 mM EDTA in water | ||
Modified RIPA buffer | 1% NP40/Igepal, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, and 1% protease inhibitor water solution (non-EDTA) in PBS pH 7.8 or 7.4 | ||
IP dilution buffer | 0.01% SDS, 1.1% Triton-X 100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 0.1x protease inhibitor | ||
Wash buffer | 100 mM Tris pH 9, 100 mM LiCl, 1% NP-40, and 1% sodium deoxycholate | ||
Swelling buffer | 0.1 M Tris pH 7.5, 10 mM potassium acetate, 15 mM magnesium acetate, 1% NP-40 | ||
Dilution buffer | 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8 and 167 mM NaCl | ||
IP elution buffer | 1% SDS, 10% NaHCO3 |