Bir soruşturma oksidatif yanma kimya roman biyoyakıt, yakıt bileşenleri veya jet yakıtları tarafından sunulan verilerin nicel Türleşme karşılaştırılması. Veri Kinetik modeli doğrulama için kullanılan ve yakıt değerlendirme stratejileri sağlar. Bu el yazması atmosferik yüksek sıcaklık akışı reaktör açıklar ve yeteneklerini gösterir.
Bu el yazması güçlü moleküler ışın kütle spektrometresi (MBMS) tekniği için birleştiğinde bir yüksek sıcaklık akışı reaktör deney açıklar. Bu esnek bir araç iyi kontrollü şartlar altında tepki akar kimyasal gaz fazlı Kinetik detaylı bir gözlem sunar. Çalışma koşulları bir laminar akış reaktörde mevcut çok çeşitli genellikle alev deneyler tarafından ulaşılabilir değildir olağanüstü yanma uygulamalara erişim sağlar. Bunlar, gazlaştırma işlemleri, düşük sıcaklık oksidasyon rejim veya soruşturma karmaşık teknik yakıtların yöneten peroxy kimya yüksek sıcaklıklarda ilgili zengin koşulları içerir. Sunulan Kur ölçümleri tepki Kimya sistematik bir genel anlayış etkinleştirme sırasında yanma, gazlaştırma ve pyrolysis süreçlerin, reaksiyon modeli doğrulama için nicel Türleşme veri sağlar. Doğrulama, Kinetik tepki modelleri genellikle saf bileşikler yanma süreçleri inceleyerek gerçekleştirilir. Akış reaktör fenomenolojik meydana gelen yanma intermediates kurum öncüleri veya kirleticiler gibi çözümlenmesi için izin vermek için teknik yakıtlar (örneğin çok bileşenli karışımları gibi Jet A-1) için uygun olarak geliştirilmiştir. Deneysel tasarım tarafından sağlanan kontrollü ve karşılaştırılabilir sınır koşulları kirletici oluşumu eğilimler tahminlerin için izin verir. Soğuk Reaktanları premix son derece (Ar yaklaşık 99 vol %) olarak kendi kendini idame ettiren Yanma reaksiyonları bastırmak için seyreltilmiş reaktör içine beslenir. Gaz bileşimi reaktörler egzoz fırın sıcaklığı bir fonksiyonu olarak belirlenir iken Laminer akan kontrollerimiz karışımı bilinen sıcaklık alanı geçer. Akış reaktör kadar 1.800 K., atmosferik basınç sıcaklıklarda işletilmektedir Ölçümler kendilerini sıcaklık tekdüze-200 K/h oranında azaltılarak gerçekleştirilir. Hassas MBMS tekniği ile detaylı Türleşme veri elde ve reaktif sürecinde radikal türler de dahil olmak üzere hemen hemen tüm kimyasal türler için sayılabilir.
Modern sonrasında yanma süreçleri anlamak, düşük emisyonlu yakıtlar yenilenebilir kaynaklardan gelen bugünün toplumları ekolojik ve ekonomik konular için bir meydan okuma olduğunu. Onlar bizim fosil yakıtlara olan bağımlılığı azaltmak, CO2 emisyonu ofset ve zararlı kirletici emisyonlarının kurum ve onun zehirli Kara filmin tarih öncesi1gibi üzerinde olumlu bir etkiye sahip potansiyeline sahip. Bu hızlı büyüyen alan modern combustor sistemlerinde onların kullanımı ile birleştirerek, isteğe bağlı yönetim kimyasal ve fiziksel süreçlerin temel bir anlayış olarak2önemli ölçüde artmıştır. Bugün bile, radikal zincir reaksiyonları sonucu karmaşık kimyasal reaksiyon ağlar hala tam anlaşılır. Çözümlemek veya bile kirletici oluşumu veya (otomatik) ateşleme işlemleri gibi olayları denetlemek için kimyasal reaksiyon ağların ayrıntılı bilgi bulmaca3çok önemli bir parçasıdır.
Araştırmak ve bu kimyasal reaksiyon ağları anlamak için sayısal ve deneysel yaklaşımlar zorunludur. Deneysel, yanma kimya genellikle özel sorular hedeflemek için Basitleştirilmiş ve iyi kontrollü akış ortamları ile deneyler uygulayarak incelenmiştir. Yüksek karmaşıklık ve bireysel alt süreçleri dinamikleri teknik combustors koşullarının tam üreme belirlenen temel özellikleri sıcaklık, basınç, ısı gibi izlenmesine izin verirken temel deneyler tarafından önlemek açıklaması, ya da kimyasal türler. Erken doğum, farklı deneysel yaklaşımlar ihtiyacını her sorularınıza mücadele ve sonraki yanma kimya genel olarak küresel resme katkıda bilgi sağlayarak, belirginleşti. Koşullar tam dizi kapak ve çeşitli yaklaşımlar teknik sistemlerinde meydana gelen karmaşık koşulları tanımlamak için bu sonraki bilgi setleri toplamak için başarılı bir şekilde geliştirilmiştir. İyi kurulmuş teknikler şunlardır:
Bu değerli teknikleri deneysel yanma Kinetik alanında tamamlayıcı, yüksek sıcaklık laminar akış reaktör deneme izleme için moleküler ışın kütle spektrometresi (MBMS) tekniği istihdam19,20 tür geliştirme ayrıntılı21,22 burada sunulmaktadır. Laminar akış koşulları, atmosferik basınç ve erişilebilir sıcaklıklar 1.800 K çalışma akış reaktör temel özellikleri hemen hemen tüm kimyasal türler içinde yanma mevcut tespiti hassas MBMS tekniği sağlar iken işlem. Bu büyük ölçüde reaktif türler değildir radikaller gibi içerir veya çok az diğer algılama yöntemleri ile izlenebilir. MBMS tekniği geleneksel ve modern alternatif yakıtlar, alkoller veya eterler23,24,25 gibi alevleri ağlarda tepki detaylı incelenmesi için yaygın olarak kullanılan ve olmak göstermiştir modern Kinetik modeli geliştirme için büyük bir değer.
Yüksek sıcaklık akışı reaktör şematik örnekleme probu (A) Yakınlaştırılmış bir çerçeve ile şekil 1 gösterir ve iki resim genel deneme (B) ve sonda vurgulayarak (C) Kurulum. Sistem iki segmentlerinde ayrılabilir: ilk, yüksek sıcaklık akışı reaktör gaz malzemeleri ve Buharlaştırıcı sistemi ve ikinci, MBMS uçuş zamanı algılama sistemi. Operasyonda, akış tüp çıkışında doğrudan MBMS sistem örnekleme meme için monte edilmiştir. Gaz reaktör prizinden örneklenmiş ve yüksek vakum algılama sistemine transfer. Burada, iyonlaşma elektron iyonlaşma sonraki uçuş zamanı algılama ile gerçekleştirilir.
Reaktör bir 40 mm iç çap seramik (Al2O3) boru 1,497 mm uzunlukta (örneğin, Gero, türü HTRH 40-1000) yüksek sıcaklıkta fırına yerleştirilir vardır. Toplam ısıtmalı bölüm uzunluğu 1000 mm boyundadır. Gazlar premix ve reaktörün içine önceden buharlaşmış temperli flanş (genellikle ~ 80 ° C’ye temperli) tarafından beslenir. Yüksek oranda seyreltilmiş (ca. 99 vol % Ar), Laminer akan kontrollerimiz karışımı geçer (sıcaklık karakterizasyonu hakkında ayrıntılı bilgi verilecek aşağıda) bilinen sıcaklık profilinden. Gaz kompozisyon tespiti reaktör çıkış fırın sıcaklığı bir fonksiyonu olarak gerçekleşir. Tekdüze azalan bir sıcaklık rampa (-200 K/s) farklı sıcaklıklarda, ölçülür yükleyen benzer sonuçlar alınabilir 1.800 K-600 K. Not aralığı fırında uygulanırken ölçümleri sürekli giriş kütle akış gerçekleştirilir izotermal Fırın Sıcaklık ve Termal atalet düzgün kabul. Termal görüntü sabitleme sisteminin hala biraz zaman alır ve sıcaklık rampa (önemsiz) küçük sıcaklık artışı için zaman ve seri başına toplam ölçüm süresi ortalama bir uzlaşma olarak seçilir. Ortalama saat (45 s) MBMS için 2,5 K. karşılık gelir. Saat 2 elde edilen ikamet süreleri belirli koşullar için (1000 K), s. Son olarak, sıcaklık tekrarlanabilirlik nedeniyle mevcut reaktör deneme için bir akraba ±5 K ölçülen sıcaklıklar hassas veya daha iyi ifade edilebilir.
Şekil 2 bile karmaşık hidrokarbon karışımları gibi teknik jet yakıt araştırmak için optimize edilmiş vaporizing sisteminin şematik gösterir. Tüm giriş akışı yüksek hassasiyetli (doğruluk ±0.5%) Coriolis kütle akış metre ölçülü. Buharlaşma yakıt sıcaklıklarda ticari Buharlaştırıcı sistemi tarafından fark ilâ 200 ° C. Önceden buharlaşmış yakıt ile bütün ikmal hatları ile genellikle 150 ° aynı anda termal bozulması kaçınırken yoğunlaşma sıvı yakıtların önlemek için C sıcaklığa ısıtılmış. Tam ve dengeli buharlaşma düzenli olarak denetlenir ve ilgili yakıtların normal kaynama noktası altındaki sıcaklıklarda bile ortaya çıkabilir. Tam buharlaşma sağlamıştır küçük yakıt kesir ve düşük kısmi basınç tarafından (genellikle 100 aşağıda Pa) gerekli.
Gazlar tarafından ortam baskılar (yaklaşık 960 hPa) reaktör çıkışında Merkez kuvars Koni’de şekil 1Yakınlaştırılmış çerçevesinde daha ayrıntılı olarak görüldüğü gibi örnek. Meme ucu kabaca 30 mm reaksiyon bölgenin sonunda seramik tüp içinde bulunduğu 50 mikron delik vardır. Unutmayın, örnekleme konumu ile ilgili olarak giriş sabittir. Isı fırın tube genişlemesi sadece mekanik bir reaksiyon kesimin sıcaklık bağımsız uzunluğu kaynaklanan örnekleme sistemine bağlı değil çıkış gerçekleşir. Bütün tepkiler gazlar yüksek vakum (iki farklı pompa aşamaları; 10-2 ve 10-4 Pa)25,26genişletildiğinde, moleküler bir ışın oluşumu nedeniyle hemen su. Örnek bir elektron etkisi (EI) saat uçuş (TOF) Kütle Spektrometre İyon kaynağı yönlendirilir (kitle çözünürlük R = 3000) içinde bir C/H elemental kompozisyonu belirlemek için uygun duyarlık mevcut türlerin tam kitle belirleme yeteneğine sahip /O sistem. Elektron enerji düşük değerlere (genellikle 9.5-10,5 eV) parçalanma iyonlaşma süreci nedeniyle en aza indirmek için ayarlanır. Eritici ve başvuru türler argon hala iyonlaşma elektronlar (1.4 eV FWHM) geniş enerji dağıtım nedeniyle tespit olduğunu unutmayın. AR düşük elektron enerji büyük türler (H2O, CO2, CO, H2O2ve yakıt) yeterli belirlenmesi için izin vermez iyi S/N, ile ölçülebilir iken önemli düşük konsantrasyonlarda olan profilleri, mevcut .
Tarafından TOF algılama ek olarak, bir kalıntı gaz analizörü (RGA), Yani quadrupole Kütle Spektrometre iyonlaşma odası yukarıda altı tür aynı anda MBMS-TOF ölçümleri için yüksek bir elektron enerji (70 eV) ile izlemek için yerleştirilir.
Bir atmosferik yüksek sıcaklık akışı reaktör ışın moleküler kütle spektrometresi algılama sistemi sağlar nicel Türleşme verisi çalışma koşulları bir dizi için sunulan birleşimi. Çeşitli çalışmalar21,22,23,27 zengin metan ilgili koşulları için kısmi oksidasyon olayları itibaren deneme esnekliğini gösterdi (φ = 2,5), soruşturma için modern jet yakıt bileşik…
The authors have nothing to disclose.
Kütle spektrometresi bölümü, yanma Teknik Üniversitesi, Deutsches Zentrum für Luft-und Raumfahrt (DLR) Stuttgart, Almanya’da deneyler yapılmıştır. Çalışma Ayrıca Helmholtz enerji-İttifak tarafından desteklenmiştir “Sentetik sıvı hidrokarbon”, Merkezi-of-Excellence “Alternatif yakıtlar” DLR proje ve “Gelecek yakıtlar”. Yazarlar Patrick Le Clercq ve Uwe Riedel jet yakıt verimli tartışmalar için teşekkür etmek istiyorum.
Time-Of-Flight MBMS | Kaesdorf | n.a. | custom design |
Molecular Beam Samling Interface | self made | n.a. | custom design |
Laminar Flow Reactor | Gero | Type HTRH 40-1000 | custom design |
Quadrupole MS | Hiden | HAL/3F 301 | adapted to ionization chamber |
Vaporizer | Bronkhorst | CEM | Vaporizer |
Mass Flow Meter | Bronkhorst | Mini Cori-Flow M12, M13, M14 | Flow Controller |
Jet A-1 | n.a. | n.a. | Standard Jet fuel of interest |
Metal syringe | Hugo Sachs | 70-2252 | Fuel Supply |
Heating Hoses | Hillesheim | HMI series | Gas Preheating |
Gas | Linde | Ar, O2 | Diluent, Oxidizer |