Summary

Campo elétrico controle de Estados eletrônicos em WS2 nanodispositivos por retenção de eletrólitos

Published: April 12, 2018
doi:

Summary

Aqui, apresentamos um protocolo para controlar o número de porta-aviões em sólidos usando o eletrólito.

Abstract

Um método de controle de número de porta-aviões por retenção de eletrólitos é demonstrado. Nós obtivemos WS2 flocos finos com superfície plana atomicamente através do método da fita adesiva ou individuais WS2 nanotubos por dispersar a suspensão do WS2 nanotubos. As amostras selecionadas tem sido fabricadas em dispositivos pelo uso da litografia de feixe de elétrons e o eletrólito é colocado nos dispositivos. Nós têm caracterizado as propriedades eletrônicas dos dispositivos sob aplicando a tensão do portão. Na região de tensão pequeno portão, íons no eletrólito são acumulados na superfície das amostras que leva à grande elétrico potencial gota e resultante eletrostática transportadora de doping na interface. Observou-se a curva de transferência ambipolar nesta região de dopagem eletrostática. Quando a tensão da porta é ainda maior, nos conhecemos mais um aumento drástico da corrente de fonte-dreno que implica que os íons são intercaladas em camadas de WS2 e eletroquímica portador de doping é realizado. Em tal região de dopagem eletroquímica, observou-se supercondutividade. A técnica focalizada fornece uma poderosa estratégia para alcançar a fase de transição quântica elétrico arquivado-induzida.

Introduction

Controle o número de porta-aviões é a técnica de chave para realizar a transição de fase quântica em sólidos1. O transistor de efeito de campo convencionais (FET), isso é conseguido pela utilização do portal sólido1,2. Em tal dispositivo, gradiente de potencial elétrico é uniforme em toda os materiais dielétricos por esse número de transportadora induzida na interface é limitado, mostrado na Figura 1a.

Por outro lado, conseguimos a maior densidade de porta-aviões para a interface ou a granel, substituindo os materiais dielétricos sólidos com géis/líquidos iônicos ou polímero eletrólitos3,4,5,6, 7,8,9,10,11 (Figura 1b). No doping pelo uso do líquido iônico electrostático, estrutura de camada dupla elétrica transistor (Edit) é formada na interface entre o líquido iônico e amostra, gerando forte campo elétrico (> 0.5 V/Å) mesmo em baixa tensão de polarização. Densidade resultante transportadora alta (> 1014 cm-2) induzida na causa13 interface10,12,o romance eletrônico Propriedades ou quântica transição de fase tais como campo elétrico induzido ferromagnetismo14, bloqueio de Coulomb15, transporte ambipolar16,17,18,19,20, 21 , 22 , 23 , 24 , 25 , 26 , 27, formação de junção p-n e electroluminance resultante28,29,30, grande modulação dos poderes termelétrica31,32, onda de densidade de carga e Mott transições33,34,35, e36,37 , incluindo a supercondutividade elétrica campo-induzida9 a transição metal-isolante elétrico campo-induzida ,10,11,38,39,40,41,42,43,44 ,,45,46,47,,48,49.

O gating eletrólito (Figura 1C), íons não são acumulados somente na interface para formar Edit, mas podem também ser intercaladas em camadas de materiais bidimensionais via difusão térmica sem amostra prejudicial sob aplicando a tensão do grande portão, levando para a eletroquímica antidoping8,9,11,34,38,50,51,52,53 . Assim, nós podemos mudar drasticamente o número de porta-aviões em comparação com o transistor de efeito de campo convencionais usando a porta sólida. Em particular, o campo elétrico induzido supercondutividade9,11,34,38,50 é realizado pelo uso de eletrólito gating na região da grande transportadora número onde não temos acesso pelo método convencional sólido associado.

Neste artigo, apresentamos esta técnica única de controle número do portador em sólidos e visão geral sobre o funcionamento do transistor e supercondutividade elétrica campo-induzida em semicondutores WS2 amostras como WS2 flocos e WS2 nanotubos54,55,56,57.

Protocol

1. dispersão de WS 2 nanotubos (NTs) no substrato Disperse o pó de2 NT WS em álcool isopropílico (IPA, mais de 99,8% de concentração), com adequada relação diluída (cerca de 0,1 mg/mL) por sonication por 20 min.Nota: A longa data sonication ajuda a tornar o WS2 NTs uniformemente suspensas no líquido do IPA e separado bem-formado individuais WS2 NTs de amorfo WS2 ou outras sucatas, bem como para remover o lixo acumulando na WS2 NTs s…

Representative Results

As operações de transistor típico de um indivíduo WS2 NT e um dispositivos de floco WS2 são mostradas na Figura 3a e 3b, respectivamente, onde a fonte drenar corrente (euDS) como uma função da tensão da porta (V G) gentilmente opera em um modo ambipolar, mostrando um notável contraste com a resposta de portão unipolar pelo FET gated sólido convencional em anterior publi…

Discussion

Em WS2 NTs e flocos, nós ter controlado com sucesso as propriedades elétricas por eletrostáticas ou eletro químico portador de doping.

Na região de dopagem eletrostática, operação do transistor ambipolar tem sido observada. Essa curva de transferência ambipolar com uma alta de ligar/desligar ratio (> 102) observados em viés de baixa tensão indica a transportadora eficaz de doping na interface da técnica associada do eletrólito para o ajuste do nível de Fermi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Reconhecemos o que apoio financeiro a seguir; Subsídio para promovido especialmente pesquisa (n º 25000003) de JSPS, subsídio para investigação atividade start-up (No.15H06133) e pesquisa desafiador (exploratória) (não. JP17K18748) do MEXT do Japão.

Materials

Sonication machine SND Co., Ltd. US-2 http://www.senjyou.jp/
Spin-coater machine ACTIVE Co.,Ltd. ACT-300AII http://www.acti-ve.co.jp/spincoater/standard/act300a2.html
Hot-plate TAIYO HP131224 http://www.taiyo-kabu.co.jp/products/detail.php?product_id=431
Optical Microscopy OLYMPUS BX51 https://www.olympus-ims.com/ja/microscope/bx51p/
Electron Beam Lithography machine ELIONIX INC. ELS-7500I https://www.elionix.co.jp/index.html
Scribing machine TOKYO SEIMITSU CO., LTD. A-WS-100A http://www.accretech.jp/english/product/semicon/wms/aws100s.html
Wire-bonding machine WEST·BOND  7476D-79 https://www.hisol.jp/products/bonder/wire/mgb/b.html
Physical Properties Measurement System Quantum Design PPMS http://www.qdusa.com/products/ppms.html
Lock-in amplifier Stanford Research Systems SRS830 http://www.thinksrs.com/products/SR810830.htm
Source meter Textronix KEITHLEY 2612A http://www.tek.com/keithley-source-measure-units/smu-2600b-series-sourcemeter
KClO4 Sigma-Aldrich 241830 http://www.sigmaaldrich.com/catalog/product/sigald/241830?lang=ja&region=JP
PEG WAKO 168-09075 http://www.siyaku.com/uh/Shs.do?dspCode=W01W0116-0907
IPA WAKO 169-28121 http://www.siyaku.com/uh/Shs.do?dspWkfcode=169-28121
MIBK WAKO 131-05645 http://www.siyaku.com/uh/Shs.do?dspCode=W01W0113-0564
PMMA MicroChem PMMA http://microchem.com/Prod-PMMA.htm
Acetone WAKO 012-26821 http://www.siyaku.com/uh/Shs.do?dspWkfcode=012-26821

References

  1. Ahn, C. H., et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185-1212 (2006).
  2. Ahn, C. H., Triscone, J. M., Mannhart, J. Electric field effect in correlated oxide systems. Nature. 424, 1015-1018 (2003).
  3. Panzer, M. J., Frisbie, C. D. Polymer Electrolyte Gate Dielectric Reveals Finite Windows of High Conductivity in Organic Thin Film Transistors at High Charge Carrier Densities. J. Am. Chem. Soc. 127, 6960-6961 (2005).
  4. Panzer, M. J., Frisbie, C. D. High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 88, 203504 (2006).
  5. Misra, R., McCarthy, M., Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 052905 (2007).
  6. Ono, S., Seki, S., Hirahara, R., Tominari, Y., Takeya, J. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl. Phys. Lett. 92, 103313 (2008).
  7. Lee, J., Panzer, M. J., He, Y., Lodge, T. P., Frisbie, C. D. Ion Gel Gated Polymer Thin-Film Transistors. J. Am. Chem. Soc. 129, 4532-4533 (2007).
  8. Fujimoto, T., Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983-9006 (2013).
  9. Du, H., Lin, X., Xu, Z., Chu, D. Electric double-layer transistors: a review of recent progress. J. Mater. Sci. 50, 5641-5673 (2015).
  10. Ueno, K., et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn. 83, 032001 (2014).
  11. Bisri, S. Z., Shimizu, S., Nakano, M., Iwasa, Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics. Adv. Mater. 29, 1607054 (2017).
  12. Yuan, H. T., et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046-1053 (2009).
  13. Yuan, H., et al. Zeeman-type spin splitting controlled by an electric field. Nat Phys. 9, 563-569 (2013).
  14. Yamada, Y., et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science. 332, 1065-1067 (2011).
  15. Shibata, K., et al. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating. Nat Commun. 4, 2664 (2013).
  16. Krüger, M., Buitelaar, M. R., Nussbaumer, T., Schönenbergera, C. Electrochemical carbon nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291 (2001).
  17. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., McEuen, P. L. High Performance Electrolyte Gated Carbon Nanotube Transistors. Nano Lett. 2, 869-872 (2002).
  18. Yuan, H. T., et al. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett. 11, 2601-2605 (2011).
  19. Zhang, Y., Ye, J., Matsuhashi, Y., Iwasa, Y. Ambipolar MoS2 thin flake transistor. Nano Lett. 12, 1136-1140 (2012).
  20. Braga, D., et al. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano lett. 12, 5218-5223 (2012).
  21. Saito, Y., Iwasa, Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano. 9, 3192-3198 (2015).
  22. Sugahara, M., et al. Ambipolar transistors based on random networks of WS2 nanotubes. Appl. Phys. Express. 9, 075001 (2016).
  23. Kang, M. S., Lee, J., Norris, D. J., Frisbie, C. D. High Carrier Densities Achieved at Low Voltages in Ambipolar PbSe Nanocrystal Thin-Film Transistors. Nano Lett. 9, 3848-3852 (2009).
  24. Bisri, S. Z., et al. Low Driving Voltage and High Mobility Ambipolar Field-Effect Transistors with PbS Colloidal Nanocrystals. Adv. Mater. 25, 4309-4314 (2013).
  25. Dasgupta, S., et al. Printed and Electrochemically Gated, High-Mobility, Inorganic Oxide Nanoparticle FETs and Their Suitability for High-Frequency Applications. Adv. Funct. Mater. 22, 4909-4919 (2012).
  26. Thiemann, S., Gruber, M., Lokteva, I., Hirschmann, J., Halik, M., Zaumseil, J. High-Mobility ZnO Nanorod Field-Effect Transistors by Self-Alignment and Electrolyte-Gating. Acs Appl Mater Inter. 5, 1656-1662 (2013).
  27. Wong, A. T., et al. Impact of gate geometry on ionic liquid gated ionotronic systems. APL Mater. 5, 042501 (2017).
  28. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T., Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science. 344, 725-728 (2014).
  29. Zhang, Y. J., Yoshida, M., Suzuki, R., Iwasa, Y. 2D crystals of transition metal dichalcogenide and their iontronic functionalities. 2D Materials. 2, 044004 (2015).
  30. Onga, M., Zhang, Y. J., Suzuki, R., Iwasa, Y. High circular polarization in electroluminescence from MoSe2. Appl Phys Lett. 108, 073107 (2016).
  31. Yoshida, M., et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16, 2061-2065 (2016).
  32. Saito, Y., et al. Gate-tuned thermoelectric power in black phosphorus. Nano Lett. 16, 4819-4824 (2016).
  33. Yoshida, M., et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).
  34. Yu, Y., et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol. 10, 270-276 (2015).
  35. Nakano, M., et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature. 487, 459-462 (2012).
  36. Shimotani, H., Asanuma, H., Iwasa, Y. Electric Double Layer Transistor of Organic Semiconductor Crystals in a Four-Probe Configuration. Jpn. J. Appl. Phys. 46, 3613 (2007).
  37. Shi, W., et al. Transport Properties of Polymer Semiconductor Controlled by Ionic Liquid as a Gate Dielectric and a Pressure Medium. Adv. Funct. Mater. 24, 2005-2012 (2014).
  38. Shi, W., et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).
  39. Saito, Y., Nojima, T., Iwasa, Y. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol. 29, 093001 (2016).
  40. Saito, Y., Nojima, T., Iwasa, Y. Highly crystalline 2D superconductors. Nature Rev. Mater. 2, 16094 (2016).
  41. Ueno, K., et al. Electric-field-induced superconductivity in an insulator. Nat Mater. 7, 855-858 (2008).
  42. Ye, J. T., et al. Liquid-gated interface superconductivity on an atomically flat film. Nat Mater. 9, 125-128 (2010).
  43. Ueno, K., et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat Nanotechnol. 6, 408-412 (2011).
  44. Ye, J. T., et al. Superconducting dome in a gate-tuned band insulator. Science. 338, 1193-1196 (2012).
  45. Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y., Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science. 350, 409-413 (2015).
  46. Saito, Y., et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat Phys. 12, 144-149 (2016).
  47. Costanzo, D., et al. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat Nanotechnol. 11, 339-344 (2016).
  48. Jo, S., Costanzo, D., Berger, H., Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197-1202 (2015).
  49. Lei, B., et al. Gate-tuned superconductor-insulator transition in (Li,Fe)OHFeSe. Phys. Rev. B. 93, 060501 (2016).
  50. Qin, F., et al. Superconductivity in a chiral nanotube. Nat Commun. 8, 14465 (2017).
  51. Zhao, J., et al. Lithium-ion-based solid electrolyte tuning of the carrier density in graphene. Sci. Rep. 6, 34816 (2016).
  52. Lei, B., et al. Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Phys. Rev. B. 95, 020503 (2017).
  53. Zhu, C. S., et al. Tuning electronic properties of FeSe0.5Te0.5 thin flakes using a solid ion conductor field-effect transistor. Phys. Rev. B. 95, 174513 (2017).
  54. Tenne, R., Margulis, L., Genut, M., Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 360, 444-446 (1992).
  55. Rothschild, A., Sloan, J., Tenne, R. Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169-5179 (2000).
  56. Zak, A., et al. Scaling-up of the WS2 nanotubes synthesis. Fullerenes, Nanotubes and Carbon Nanostruct. 19, 18-26 (2010).
  57. Rao, C. N. R., Nath, M. Inorganic nanotubes. Dalton T. 1, 1-24 (2003).
  58. Levi, R., Bitton, O., Leitus, G., Tenne, R., Joselevich, E. Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 13, 3736-3741 (2013).
  59. Shiogai, J., et al. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat Phys. 12, 42-46 (2016).
  60. Shiogai, J., et al. Unified trend of superconducting transition temperature versus Hall coefficient for ultrathin FeSe films prepared on different oxide substrates. Phys. Rev. B. 95, 115101 (2017).
  61. Jeong, J., et al. Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation. Science. 339, 1402-1405 (2013).
  62. Schladt, T. D., et al. Crystal-Facet-Dependent Metallization in Electrolyte-Gated Rutile TiO2 Single Crystals. ACS Nano. 7, 8074-8081 (2013).
  63. Lu, N., et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature. 546, 124-128 (2017).
  64. Suda, M., Kato, R., Yamamoto, H. M. Light-induced superconductivity using a photoactive electric double layer. Science. 347, 743-746 (2015).

Play Video

Cite This Article
Qin, F., Ideue, T., Shi, W., Zhang, Y., Suzuki, R., Yoshida, M., Saito, Y., Iwasa, Y. Electric-field Control of Electronic States in WS2 Nanodevices by Electrolyte Gating. J. Vis. Exp. (134), e56862, doi:10.3791/56862 (2018).

View Video