このプロトコルを記述する点滅表面増強ラマン分析発電法を用いた銀表面の単一分子のランダム ・ ウォークによる散乱します。
銀 nanoaggregate 接合部での単一分子から点滅表面増強ラマン散乱 (SERS) が観察されます。SERS 活性を準備する方法のプロトコルを表示するここでは、銀の nanoaggregate、顕微鏡画像の特定の点滅しているスポットのビデオを記録し、点滅の統計情報を分析します。この分析では、べき乗則はその期間を基準にして明るいイベントの確率分布を再現します。暗いイベントの確率分布は、指数関数との力法律によって取り付けられています。べき乗則のパラメーターは、明るいと暗い状態での分子の挙動を表します。ランダムウォーク モデルおよび銀表面全体に分子の速度を見積もることができます。それは平均、自己相関関数、および超解像 SERS のイメージングを使用する場合でもを見積もるは困難です。将来は、点滅の起源は、単独でこの分析法による確認ができないため電力法解析スペクトル イメージングを組み合わせる必要があります。
表面増強ラマン散乱 (SERS) は、機密性の高い貴金属表面ラマン分光です。金属表面上の単一分子の情報を調べることができますラマン スペクトル、分子内の機能グループの振動モードを鋭いピークの位置に基づく分子の構造に関する詳細情報を提供しますのでSERS1,2,3を使用しています。分子レベルで吸着と銀 nanoaggregate から点滅信号が観察される1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16、およびスペクトル変動1,2,3,4,5,6,7,8、 9,10、11,12,13,14。点滅は、ナノサイズの銀 nanoaggregate ジャンクションで強化された電磁 (EM) フィールドがランダムに出入りする単一分子誘起することができます。したがって、点滅と、表面増強ラマン散乱強度および bi 検体2,3,17のポアソン分布を用いた手法と比較して、単一分子検出のための簡単な証拠と見なされます。ただし、Ag 表面上の分子の挙動に依存が強く、点滅と変動のスペクトルの詳細なメカニズムはまだ論争を呼びます。
従来、SERS の点滅が分析されて拡散係数と、強化された EM フィールド12,13,14 出入りする分子の濃度を計算することができます自己相関関数を使用して.さらに、全磁力の不安定性を表す、正規化された標準偏差のスコアは、信号15時間プロファイルから派生しています。ただし、これらの分析方法は、いくつかの分子の挙動に基づく可能性があります。対照的に、SERS の点滅の超解像イメージング、強化された電磁界での単一分子の挙動は、識別された16をすることができます。ただし、これらのテクニックは、強化された EM 分野のみでこのようなパラメーターを取得できます。平均4,5,6,7,8 よりもむしろ力法律として (例えば、SERS の点滅) の広い範囲での単一分子のランダムな動作を表現できます。 ,9,10,11, 半導体単一量子ドット (QD)18,19から点滅蛍光に似ています。電力法分析4,5,6,7,8,9,10,11, 分子の挙動を使用して(強化された電磁界) で明るい状態と暗い状態10; の両方に推定することができます。つまり、全体の銀表面上の分子の挙動を推定できます。
この技は、銀コロイド ハイパーラマンが使用される4,5,6,7,8,9,10,11。これらハイパーラマンは、ある特定の波長で興奮しているとき強く強化された電磁界に影響を与える各種の局在表面プラズモン共鳴 (LSPR) バンドを示します。したがって、SERS 活性銀ナノ粒子コロイド懸濁液といくつかのデータに存在するがすぐに得られます。単純なナノ構造、ある特定のサイズ、形状、および手配の場合点滅 SERS の LSPR の依存性は、他の依存の7; を隠すことができます。すなわち、LSPR に良し悪しのナノ構造を使用する場合、パラメーターは定数になります、他の依存したがって隠されています。銀コロイド ハイパーラマン4,5,6,7,8,から点滅 SERS の様々 な依存症を発見するパワー法解析が使用されています9,10,11。
銀 nanoaggregate ジャンクションからセールが出力されます。したがって、我々 はコロイド状ナノ粒子、クエン酸アニオンで覆われているよりもむしろハイパーラマンを準備する必要。銀の集計は、ポリ-L-リジン、NH3+し、サールの起源の付加によって作成されるエフェクトを塩漬けから形成されているまたは塩化ナトリウム、補足資料の図 S2のようにから Na+</sup…
The authors have nothing to disclose.
著者は、この作品の実りある議論するため尾崎幸洋教授 (関西学院大学)、伊藤哲夫博士 (国立科学研究所の高度な産業と技術) をありがちましょう。この作業は、教育省、文化、スポーツ、科学および技術 (第 16 K 05671) から科研費 (費補助金科学研究 C) によって支えられました。
Silver nitrate, 99.8% | Wako | 194-00832 | |
Trisodium citrate dihydrate, 99. % | Wako | 191-01785 | |
Poly-L-lysine aqueous solution, 0.1% | Sigma-Aldrich | P8920 | |
3,3'-disulfopropylthiacyanine triethylamine | Hayashibara Biochemical Laboratories | NK-2703 | a kind of thiacyanine dyes |
3,3'-diethyl-5,5'-dichloro-9-methylthiacarbocyanine iodine salt | Hayashibara Biochemical Laboratories | SMP-9 | a kind of thiacarobocyanine dyes |
Sodium chloride, 99.5% | Wako | 191-01665 | |
Dimroth condenser | Iwaki | 61-9722-22 | perchased from AS ONE |
Magnetic stirrer | Corning | DC-420D | |
Oil bath | Advantech | OS-220 | |
Glass plate | Matsunami | S-1112 | Microscope slide |
Blower | Hozan | Z-288 | Air duster |
Liquid blocker pen | Daido Sangyo | LIQUID BLOCKER (Super Pap Pen). Ready-to-use hydrophobic barrier pen designed for immunohistochemistry applications | |
Inverted microscope | Olympus | IX-70 | |
Objective lens | Olympus | LCPlanFl 60× | NA 0.7 |
Dark field condenser | Olympus | U-DCD | NA 0.8–0.92 |
Cooled digital CCD camera | Hamamatsu | ORCA-AG | controlled by software Aqua Cosmos |
Software for the cooled digital CCD camera | Hamamatsu | AquaCosmos | used for also derivation of the time-profiles from the blinking spots in the video |
Color CCD camera | ELMO | TNC-C920 | not used for analysis |
DPSS laser | RGB laser system | NovaPro532-75 | λ = 532 nm; 60 mW (corresponds to a power density of 600 W/cm2) |
Interference filter | Semrock | LL01-532-12.5 | |
Long pass filter | Semrock | BLP01-532R-25 | |
Software for the distinguishment and counting of the bright/dark events | home-maid | programmed by C++ | |
Software for the fitting by a power law | LightStone | Origin6.1 |