Proporcionamos un protocolo para pH intracelular de un linaje de células epiteliales en el tejido ovárico de Drosophila en la proyección de imagen. Se describen métodos para generar moscas transgénicas expresando un biosensor pH, mCherry::pHluorin, imagen el biosensor usando proyección de imagen de fluorescencia cuantitativa, generar curvas estándar y convertir valores de intensidad de fluorescencia a valores de pH.
Cambios en el pH intracelular (pHi) desempeñan papeles importantes en la regulación de muchas funciones celulares, incluyendo metabolismo, proliferación y diferenciación. Por lo general, dinámica de pHi se determina en las células cultivadas, que son susceptibles de medición y la manipulación experimental de pHi. Sin embargo, el reciente desarrollo de nuevas herramientas y metodologías ha permitido estudiar dinámica pHi dentro del tejido intacto, vivo. Para la investigación de Drosophila , un desarrollo importante era la generación de una línea transgénica con un biosensor de pHi, mCherry::pHluorin. Aquí, describimos un protocolo que habitualmente utilizamos para proyección de imagen en ovariolas de Drosophila para medir pHi en el linaje de la célula de vástago (FSC) epitelial del folículo en líneas transgénicas tipo salvaje de mCherry::pHluorin; sin embargo, los métodos aquí descritos pueden ser fácilmente adaptados para otros tejidos, incluyendo los discos de ala y el epitelio del ojo. Se describen técnicas para expresar mCherry::pHluorin en el linaje FSC, manteniendo el tejido ovárico durante la proyección de imagen, vivo y adquirir y analizar imágenes para obtener valores de pHi.
Estudios recientes revelaron un papel para cambios en pHi durante celular diferenciación y displasia en vivo1,2. Estos estudios encontraron que pHi es notablemente consistente en células del mismo tipo en la misma etapa de diferenciación, pero que cambia como las células de transición de una etapa a otra. En algunos casos, bloqueando parcialmente los cambios en pHi altera la diferenciación, lo que sugiere que el cambio en pHi no es sólo una consecuencia de los cambios de destino de la célula pero en cambio ayuda a promover el cambio de destino de la célula, quizás a través de efectos sobre el pH-sensible a la regulación las proteínas o las reacciones químicas necesarias para la diferenciación. Los estudios futuros tienen el potencial para revelar más información sobre las muchas funciones diferentes del pHi dinámica en vivo. Sin embargo, uno de los desafíos de estudiar la pHi durante la diferenciación en vivo es la obtención de medidas precisas de pHi. A diferencia de otras características de diferenciación, tales como cambios en la morfología celular y expresión génica, pHi es una propiedad química lábil de la célula que no se conserva en las células que se han fijado y permeabilized con métodos estándar. Además, pHi puede no ser estable en las células que están estresadas o muere como resultado de la manipulación experimental. Por lo tanto, es importante mantener las células vivas y tan saludable como sea posible cuando mide pHi. Varios colorantes vitales están disponibles que funcionan bien para medir PI de las células en cultura3, pero en muchos casos no son adecuadas para en vivo los estudios porque no penetran el tejido uniformemente o profundamente bastante para proporcionar mediciones precisas .
Para evitar el problema de la penetración de tinte pobre, nosotros y otros hemos utilizado una sonda genéticamente codificada, mCherry::pHluorin4,5,6,7, que puede ser expresado específicamente en la célula tipos de interés y reflejada en tejido vivo. pHluorin es una variante de la GFP con un pKa superior (~ 7,0 vs ~ 4.0) que dobla más fácilmente a pH más alto; así que la intensidad de fluorescencia total emitida por una población de pHluorin de moléculas en la célula aumenta con el aumento del pHi8. Lo importante, la fluorescencia es lineal dentro del rango normal citosólico de los valores de la pHi. En contraste, la fluorescencia de mCherry (pKa ~ 4.5) es insensible a los cambios en el pH dentro de la gama citosólica. Estos dos periodistas son covalente juntos como una sola proteína quimérica, codificada por un marco abierto de lectura único, por lo que siempre están presentes en cantidades iguales. Por lo tanto, el de pHluorin a la intensidad de la fluorescencia mCherry proporciona una medida del pHi que es normalizada a la concentración de la sonda en cada célula. Los cocientes se pueden convertir entonces las estimaciones de los valores de la pHi usando una curva estándar generada por obtener la pHluorin mCherry cocientes de los tejidos que han sido equilibrados a valores de pH conocido.
Aquí, describimos los métodos para el uso de mCherry::pHluorin para medir la pHi del linaje epitelial de la FSC en el ovario del Drosophila . Este tejido bien caracterizado se ha utilizado para modelar diferentes aspectos de la biología epitelial, tales como la célula de vástago auto renovación y diferenciación9,10,11, migración de la célula colectiva12 , el desarrollo y mantenimiento de celulares polaridad13,14. El epitelio del folículo se produce por dos remiten que residen en el borde anterior de los tejidos en una estructura llamada el germarium15,16. Estas células se dividen regularmente durante la edad adulta para la autorrenovación y producir progenie, denominadas células prefollicle (PFC), que pueden volver a entrar en el nicho y convertirse en un FSC o diferenciar en uno de los tres tipos de células del folículo diferentes: las células polares, las células del tallo, o células del folículo del cuerpo principal. Demostramos previamente que en el tejido de tipo salvaje, el PI aumenta constantemente durante las primeras etapas de diferenciación, de una pHi de aproximadamente 6,8 en remiten a 7.0 en PFC, 7.3 en folículo células2. Bloqueo este aumento por la caída de ARNi de un intercambiador sodio/protones ubicuo expresada, DNhe2, severamente deteriora diferenciación de pFC, considerando que el aumento de pHi por la sobreexpresión de DNhe2 causa una leve diferenciación de exceso fenotipo. Estos resultados demuestran que el pHi se mantiene estable en el linaje FSC temprano y que pueden ser experimentalmente aumentado o había disminuido en vivo. Los métodos descritos aquí pueden utilizarse para medir pHi en tejido tipo salvaje o diversas formas de tejidos mutantes, incluyendo caída de ARNi o sobreexpresión usando Gal4 de interés y los clones mitotic.
Aquí, describimos un método para la medición de PI de las células en el linaje FSC dentro del tejido de tipo salvaje. Este protocolo ha sido desarrollado y refinado durante los últimos cinco años, desde que comenzó a estudiar pHi en Drosophila el tejido ovárico. Durante ese tiempo, el protocolo ha sido utilizado con éxito por varios investigadores en nuestro laboratorio y por lo menos cuatro diferentes spinning disco y microscopios de escaneo láser. La reproducibilidad de nuestra observación original,…
The authors have nothing to disclose.
Agradecemos Bryne Ulmschneider contribuciones al Protocolo y Diane Barber para sugerencias sobre el manuscrito. Este trabajo fue financiado por el Instituto Nacional de donación de salud GM116384 para Nystul T.G. y D.L. barbero.
Fly Stocks | |||
UAS-mCherry::pHluorin[1] | |||
y1 w*;P{GawB}10930/CyO | Bloomington Stock Center | 7023 | |
Act-Gal4 flipout stock | Bloomington Stock Center | 4409 | |
Name | Company | Catalog Number | Comments |
Chemicals for Buffer preparation | |||
NaCl | Sigma Aldrich | S5886 | |
KCl | Sigma Aldrich | P-3911 | |
glucose | Mallinckrodt | 4912 | |
HEPES | Thermo Fisher Scientific | BP310 | |
MgSO4 | Thermo Fisher Scientific | M63 | |
CaCl2 | Sigma Aldrich | C-5080 | |
HCO3 | Sigma Aldrich | S-5761 | |
MgCl2 | Sigma Aldrich | M-9272 | |
NMDG+ | Sigma Aldrich | M-2004 | |
K2HPO4 | Mallinckrodt | 7088 | Use to Make KHPO4 pH 7.4 |
KH2PO4 | Thermo Fisher Scientific | BP362 | Use to Make KHPO4 pH 7.4 |
Concanavalin A, Alexa Fluor 647 Conjugate | Thermo Fisher Scientific | C21421 | 0.25 mg/ml dilution |
Nigericin | Thermo Fisher Scientific | N1495 | |
Name | Company | Catalog Number | Comments |
Dissection and mounting tools | |||
2 Dumont Inox forceps (Size 5) | Thermo Fisher Scientific | NC9473431 | |
2 23-gauge syringe needles | Sigma Aldrich | Z192457 | |
9-well glass dissecting dish | Thermo Fisher Scientific | 13-748B | |
Vacuum Grease | Dow Corning | 1018817 | |
22 X 40 mM glass coverslips | Thermo Fisher Scientific | 12545C | |
Round Glass Coverslips, 12mm diameter, 0.13-0.16mm thickness | Ted Pella, Inc. | 26023 | |
3-D mounting chamber | custom manufactured | .stl and .ipt files for 3-D printer included as supplemental files | |
Name | Company | Catalog Number | Comments |
Other equipment | |||
pH meter | Thermo Fisher Scientific | 13-620-183A | Model: Accumet AB15 |
Dissection microscope | Olympus Corporation | 0H11436 | Model: SZ2-ST |
Confocal Microscope | Leica Biosystems | SP5 or SP8 laser-scanning confocal microscope with a 40× objective with a numerical aperture of 1.3 |