Summary

Asignación de genoma cromatina accesible en linfocitos T humanos primarios por ATAC-Seq

Published: November 13, 2017
doi:

Summary

Ensayo para cromatina transposasa accesible junto con secuenciación de alto rendimiento (ATAC-seq) es un método de genoma cromatina accesible de descubrir. Se trata de un protocolo de ATAC-seq paso a paso, desde el molecular al final análisis computacional, optimizado para los linfocitos humanos (Th1/Th2). Este protocolo puede ser adoptada por los investigadores sin experiencia previa en métodos de secuenciación de próxima generación.

Abstract

Ensayo de cromatina transposasa accesible con secuenciación de alto rendimiento (ATAC-seq) es un método utilizado para la identificación de regiones (accesibles) abiertas de la cromatina. Estas regiones representan ADN elementos reguladores (por ejemplo, promotores, potenciadores, locus control regiones, aisladores) a que transcripción factores unen. Cartografía del paisaje de la cromatina accesible es un enfoque poderoso para descubrir elementos reguladores activos en todo el genoma. Esta información sirve como un enfoque imparcial para descubrir la red de factores de transcripción relevantes y mecanismos de la estructura de la cromatina que regulan programas de expresión génica. ATAC-seq es una alternativa robusta y sensible a la ADNasa I Análisis de hipersensibilidad junto con la secuenciación de próxima generación (DNasa-seq) y asistido por el formaldehído aislamiento de elementos reguladores (FAIRE-seq) para el análisis del genoma de la cromatina accesibilidad y a la secuenciación de sitios sensibles a la nucleasa micrococcal (MNase-seq) para determinar el posicionamiento del nucleosoma. Presentamos un protocolo detallado de ATAC-seq optimizado para humano inmune primario de las células por ejemplo CD4 + linfocitos (helper T 1 (Th1) y las células Th2). Este protocolo integral comienza con la cosecha de la célula, luego describe el procedimiento molecular de la cromatina tagmentation, preparación de muestras para secuenciación de próxima generación y también incluye métodos y consideraciones para el análisis computacional utilizado para interpretar los resultados. Además, para ahorrar tiempo y dinero, introducido medidas de control de calidad para evaluar la biblioteca ATAC-seq antes de la secuencia. Lo importante, los principios presentados en este protocolo permiten su adaptación a otros las células humanas inmunes y no inmunes primarios y líneas celulares. Estas pautas también será útiles para laboratorios que no son expertos en métodos de secuenciación de próxima generación.

Introduction

ATAC-seq1,2 es un método robusto que permite la identificación del regulador3 regiones de cromatina abierta y posicionamiento de nucleosoma. Esta información se aplica para inferir la ubicación, identidad y actividad de factores de transcripción. Sensibilidad del método para la medición de las variaciones cuantitativas en la estructura de la cromatina permite el estudio de la actividad de factores de la cromatina, remodeladores de cromatina y modificadores, así como la actividad transcripcional del RNA polimerasa II1. Así ATAC-seq proporciona un enfoque imparcial y poderoso para descifrar los mecanismos que rigen la regulación transcripcional en cualquier tipo de célula de interés. Se describe la adaptación de ATAC-seq a células Th1 y Th2 humanas primarias.

En ATAC-seq, hiperactiva Tn5 transposasa cargado con adaptadores para secuenciación de próxima generación (NGS) parejas fragmentación del ADN con el marcaje de ADN con adaptadores (es decir, el proceso de “tagmentation”)1. Tras amplificación por PCR, las bibliotecas de ADN resultantes están listas para secuenciación de próxima generación (figura 1). El tagmentation preferencial de la cromatina accesible es detectado por el análisis del enriquecimiento local de Lee de la secuencia seq ATAC.

El procedimiento experimental corto y el requisito de menos material de partida, en comparación con otros métodos para medir la accesibilidad de la cromatina y posicionamiento nucleosomal como DNasa-seq4, FAIRE-seq5y MNase-seq6, ha promovió el uso de ATAC-seq en varios sistemas biológicos como células primarias humanas1,7 y8de las muestras clínicas, así como organismos unicelulares9, plantas10, moscas de la fruta11 y varios mamíferos12.

La identidad de la transcripción de factores que están limitados a lugares accesibles pueden ser descubiertos por analizar el enriquecimiento de sus motivos de secuencia de unión o combinación de ATAC-seq con inmunoprecipitación de cromatina (ChIP) seguida de alto rendimiento (de secuenciación de ADN ChIP-seq). Este enfoque permitió la identificación de factores de transcripción específicos del linaje importantes de hematopoyesis en ratón13. El carácter imparcial y global de ATAC-seq permite estudiar la regulación de los genes en organismos que no están disponibles reactivos, tales como anticuerpos para el análisis de la viruta. Por ejemplo, variaciones evolutivas en cis-se han identificado regiones reguladoras mediante el estudio de las células de cresta neural craneal de los seres humanos y los chimpancés14, desarrollo variaciones en elementos reguladores durante temprano ratón embriogénesis de15, cambios en el panorama regulatorio durante un ciclo de vida de unicelulares owzarzaki C.9y la evolución de los promotores y potenciadores en mamíferos 20 especies12.

ATAC-seq también ha sido instrumental para la medición de accesibilidad de la cromatina en las células, así revela la variabilidad dentro de poblaciones celulares, que generalmente evade genoma estudios7,16. Además, ATAC-seq puede utilizarse para estudiar los cambios que se producen en regiones reguladoras de DNA en condiciones de enfermedad, en la cual las muestras son raras. Por ejemplo, ATAC-seq puede utilizarse para estudiar los cambios en el panorama regulatorio durante el inicio de la leucemia mieloide aguda (AML)17 o Ras-conducido de la oncogénesis11.

Protocol

todos los procedimientos fueron aprobados por la Junta de revisión institucional de la Universidad de Bar Ilan y el protocolo sigue pautas proporcionadas por el Comité de aprobación de los experimentos de. 1. purificación de ingenuo CD4 + las células humanas y polarización T Helper 1 (Th1) y las células Th2 Nota: aquí se describe el procedimiento a partir de las células mononucleares de sangre periférica humana congelada (PBMCs). El primer paso consiste e…

Representative Results

El resultado final de este protocolo es una biblioteca de ATAC-seq de típicamente 3-20 ng/μl. Cuando se ejecuta en un sistema de análisis de integridad de ADN (véase Tabla de materiales y equipos), muestran apariencia de escalera2 (Figura 3A). El tamaño promedio de fragmentos de ADN es típicamente ~ 450-530 bp. Adecuado control de calidad de las bibliot…

Discussion

El protocolo de ATAC-seq descrito aquí se ha empleado con éxito para el análisis de la cromatina accesible en células primarias (humano Th1, Th2 células y células B) así como las líneas de cultivo de células (células de cáncer de mama humanas MCF10A y células de glioblastoma U261). Aplicación de ATAC-seq a otros tipos celulares puede requerir algunos optimización de protocolo, especialmente en el paso de lisis. Si la concentración de detergente no iónico es demasiado alta, puede haber un porcentaje mayor …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo es apoyado por la Israel Science Foundation (grant 748/14), Marie Curie de integración otorga (CIG) – FP7-gente-20013-CIG-618763 y I-CORE programa de planificación y Comisión de presupuesto y el Israel Science Foundation beca nº 41/11.

Materials

50 mL tubes Lumitron LUM-CFT011500-P Can be from other vendors.
Microtubes Axygen Inc MCT-175-C Can be from other vendors.
25 mL serological pipettes Corning Costar 4489 Can be from other vendors.
Tissue culture flask Lumitron LUM-TCF-012-250-P Can be from other vendors.
Countes Automated Cell Counter Invitrogen C10227
NucleoSpin Tissue MACHEREY-NAGEL 740952.5
Peripheral blood mononuclear cells (PBMC) ATCC  PCS­800­011 Can be from other vendors.
RPMI 1640 Medium Biological Industries 01-103-1A Can be from other vendors.
L-Glutamine Solution (200 mM) Biological Industries 03-020-1B Can be from other vendors.
Penicillin-Streptomycin Biological Industries 03-031-1B Can be from other vendors.
Fetal Bovine Serum (FBS), Heat Inactivated, European Grade Biological Industries 04-127-1 Can be from other vendors.
MACS CD4 microbeads, human Miltenyi Biotec 130-045-101
MACS MS columns Miltenyi Biotec 130-042-201
Anti-Human CD4 FITC Biogems 06121-50
Mouse IgG1 Isotype Control FITC Biogems 44212-50
Anti-Human CD3 (OKT3) Tonbo biosciences 40-0037
Anti-Human CD28 SAFIRE Purified Biogems 10311-25
Recombinant Human IL2 Peprotech 200-02
Recombinant Human IL4 Peprotech 200-04
Recombinant Human IL12 p70 Peprotech 200-12
In Vivo Ready Anti-Human IL-4 (MP4-25D2) Tonbo 40-7048
LEAF Purified anti-human IFN-γ BioLegend 506513
NaCl, analytical grade Carlo Erba 479687 Can be from other vendors.
Magnesium chloride, Hexahydrate, molecular biology grade Calbiochem 442611 Can be from other vendors.
EDTA MP Biomedicals 800682 Can be from other vendors.
Tris, ultra pure, 99.9% pure MP Biomedicals 819620 Can be from other vendors.
NP-40 alternative (Nonylphenyl Polyethylene Glycol) Calbiochem 492016 Can be from other vendors.
Protease Inhibitors Sigma P2714 this protease inhibitor coctail is a powder. To make 100 x solution dilute in 1 mL of molecular-biology grade water.
Magnetic solid phase reverse immobilization beads: AMPure XP beads Beckman 63881
PCR purification kit HyLabs EX-GP200 Can be from other vendors.
Nextera DNA Library Preparation Kit (TDE1 transposase and TD buffer) Illumina FC-121-1030
NEBNext High-Fidelity 2 x PCR Master Mix New England BioLabs M0541
NEBNext Q5 Hot Start HiFi PCR Master Mix New England BioLabs M0543
SYBR Green I  Invitrogen S7585
 CFX Connect Real-Time PCR Detection System Bio-rad 185-5200 Can be from other vendors.
CFX Manager Software Bio-rad 1845000
master mix for qPCR: iTaq Universal SYBR Green Supermix Bio-rad 172-5124 Can be from other vendors.
Qubit fluorometer 2.0 Invitrogen Q32866
Qubit dsDNA HS Assay Kit Invitrogen Q32854
Magnet for eppendorf tubes Invitrogen 12321D Can be from other vendors.
Swing bucket cooling centrifuge with the buckets for 15 mL falcon tubes and eppendorf tubes Thermo Scientific 75004527 Could be from other vendors. It is important that it has buckets for eppendorf tubes.
Thermo-shaker MRC Can be from other vendors.
High Sensitivity D1000 ScreenTape Agilent Technologies 5067-5584
High Sensitivity D1000 Reagents Agilent Technologies 5067-5585
4200 TapeStation system Agilent Technologies G2991AA Tape-based platform for  electrophoresis
High Sensitivity DNA kit Agilent Technologies 5067-4626 Reagent for high-sensitivity TapeStation analysis
Primer name and sequence Company
Ad1_noMX: 5'-AATGATACGGCGACCACCGAGA
TCTACACTCGTCGGCAGCGTC
AGATGTG-3'
IDT Ad1-noMx: 5'-P5 sequence-transposase sequence-3'
Ad2.1_TAAGGCGA: 5'-CAAGCAGAAGACGGCATACGAG
AT[TCGCCTTA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.1_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.2_CGTACTAG: 5'-CAAGCAGAAGACGGCATACGAG
AT[CTAGTACG]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.2_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.3_AGGCAGAA: 5'-CAAGCAGAAGACGGCATACGA
GAT[TTCTGCCT]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.3_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.4_TCCTGAGC: 5'-CAAGCAGAAGACGGCATACGAG
AT[GCTCAGGA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.4_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.5_GGACTCCT: 5'-CAAGCAGAAGACGGCATACGA
GAT[AGGAGTCC]GTCTCGTGGG
CTCGGAGATGT-3'
IDT Ad2.5_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.6_TAGGCATG: 5'-CAAGCAGAAGACGGCATACGA
GAT[CATGCCTA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.6_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.7_CTCTCTAC: 5'-CAAGCAGAAGACGGCATACGA
GAT[GTAGAGAG]GTCTCGTGGG
CTCGGAGATGT-3'
IDT Ad2.7_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.8_CAGAGAGG: 5'-CAAGCAGAAGACGGCATACGA
GAT[CCTCTCTG]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.8_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.9_GCTACGCT: 5'-CAAGCAGAAGACGGCATACGA
GAT[AGCGTAGC]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.9_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.10_CGAGGCTG: 5'-CAAGCAGAAGACGGCATACG
AGAT[CAGCCTCG]GTCTCGTGG
GCTCGGAGATGT-3'
IDT Ad2.10_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.11_AAGAGGCA: 5'-CAAGCAGAAGACGGCATACG
AGAT[TGCCTCTT]GTCTCGTGGG
CTCGGAGATGT-3'
IDT Ad2.11_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.12_GTAGAGGA: 5'-CAAGCAGAAGACGGCATACG
AGAT[TCCTCTAC]GTCTCGTGGG
CTCGGAGATGT-3'
IDT Ad2.12_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.13_GTCGTGAT: 5'-CAAGCAGAAGACGGCATACGA
GAT[ATCACGAC]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.13_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.14_ACCACTGT: 5'- CAAGCAGAAGACGGCATACGA
GAT[ACAGTGGT]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.14_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.15_TGGATCTG: 5'- CAAGCAGAAGACGGCATACGA
GAT[CAGATCCA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.15_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.16_CCGTTTGT: 5'- CAAGCAGAAGACGGCATACGA
GAT[ACAAACGG]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.16_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
 Ad2.17_TGCTGGGT: 5'- CAAGCAGAAGACGGCATACGA
GAT[ACCCAGCA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.17_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
 Ad2.18_GAGGGGTT: 5'-CAAGCAGAAGACGGCATACGA
GAT[AACCCCTC]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.18_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.19_AGGTTGGG: 5'-CAAGCAGAAGACGGCATACGA
GAT[CCCAACCT]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.19_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
 Ad2.20_GTGTGGTG: 5'-CAAGCAGAAGACGGCATACGA
GAT[CACCACAC]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.20_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
 Ad2.21_TGGGTTTC: 5'-CAAGCAGAAGACGGCATACGA
GAT[GAAACCCA]GTCTCGTGGGC
TCGGAGATGT-3'
IDT Ad2.21_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.22_TGGTCACA: 5'- CAAGCAGAAGACGGCATACGA
GAT[TGTGACCA]GTCTCGTGGGCT
CGGAGATGT-3'
IDT Ad2.22_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.23_TTGACCCT: 5'-CAAGCAGAAGACGGCATACGA
GAT[AGGGTCAA]GTCTCGTGGGCT
CGGAGATGT-3'
IDT Ad2.23_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
Ad2.24_CCACTCCT: 5'-CAAGCAGAAGACGGCATACGA
GAT[AGGAGTGG]GTCTCGTGGGCT
CGGAGATGT-3'
IDT Ad2.24_expected index sequence read: 5'-P7 sequence-[index sequence]-transposase sequence-3'
F1: 5'-CCTTTTTATTTGCCCATACACTC-3' IDT
R1: 5'-CCCAGATAGAAAGTTGGAGAGG-3' IDT
F2: 5'-TTGAGGGATGCCATAACAGTC-3' IDT
R2: 5'-CTGCTGAACAACATCCTTCAC-3' IDT
F3: 5'-GGTTTGCAGGTTGCGTTG-3' IDT
R3: 5'-AGAGGAATCTGGGAGTGACG-3' IDT
F4: 5'-TGCTCATTCCGTTTCCCTAC-3' IDT
R4: 5'-AGCCGGAAAGAAAGTTCCTG-3' IDT

References

  1. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 10 (12), 1213-1218 (2013).
  2. Buenrostro, J. D., Wu, B., Chang, H. Y., Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. , 21.29.1-21.29.9 (2015).
  3. Thurman, R. E., Rynes, E., et al. The accessible chromatin landscape of the human genome. Nature. 489 (7414), 75-82 (2012).
  4. Song, L., Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. (2), (2010).
  5. Simon, J. M., Giresi, P. G., Davis, I. J., Lieb, J. D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc. 7 (2), 256-267 (2012).
  6. Cui, K., Zhao, K. Genome-Wide Approaches to Determining Nucleosome Occupancy in Metazoans Using MNase-Seq. Methods Mol Biol. 833, 413-419 (2012).
  7. Qu, K., et al. Individuality and Variation of Personal Regulomes in Primary Human T Cells. Cell Syst. 1 (1), 51-61 (2015).
  8. Scharer, C. D., et al. ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells. Sci Rep. 6, 27030 (2016).
  9. Sebé-Pedrós, A., et al. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell. 165 (5), 1224-1237 (2016).
  10. Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M., Schmitz, R. J. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45 (6), e41 (2016).
  11. Davie, K., et al. Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling. PLOS Genet. 11 (2), (2015).
  12. Villar, D., et al. Enhancer Evolution across 20 Mammalian Species. Cell. 160 (3), 554-566 (2015).
  13. Lara-Astiaso, D., et al. Chromatin state dynamics during blood formation. Science. 345 (6199), 943-949 (2014).
  14. Prescott, S. L., et al. Enhancer Divergence and cis-Regulatory Evolution in the Human and Chimp Neural Crest. Cell. 163 (1), 68-83 (2015).
  15. Wu, J., et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 534 (7609), 652-657 (2016).
  16. Buenrostro, J. D., et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 523 (7561), 486-490 (2015).
  17. Corces, M. R., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 48 (10), 1193-1203 (2016).
  18. Jenner, R. G., et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci USA. 106 (42), 17876-17881 (2009).
  19. DeAngelis, M. M., Wang, D. G., Hawkins, T. L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 23 (22), 4742-4743 (1995).
  20. Aird, D., et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12 (2), R18 (2011).
  21. Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10 (3), R25 (2009).
  22. Li, H., Handsaker, B., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25 (16), 2078-2079 (2009).
  23. Quinlan, A. R., Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26 (6), 841-842 (2010).
  24. Zhang, Y., et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9 (9), R137 (2008).
  25. Meyer, C. A., Shirley Liu, X. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet. 15 (11), 709-721 (2014).
  26. He, H. H., et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Methods. 11 (1), 73-78 (2013).
  27. Madrigal, P. On Accounting for Sequence-Specific Bias in Genome-Wide Chromatin Accessibility Experiments: Recent Advances and Contradictions. Front Bioeng Biotechnol. 3, 1-4 (2015).
  28. Qin, Q., et al. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics. 17 (1), (2016).
  29. Bao, X., et al. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol. 16 (1), 284 (2015).
  30. Maurano, M. T., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 337 (6099), 1190-1195 (2012).

Play Video

Cite This Article
Grbesa, I., Tannenbaum, M., Sarusi-Portuguez, A., Schwartz, M., Hakim, O. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq. J. Vis. Exp. (129), e56313, doi:10.3791/56313 (2017).

View Video