ここでは、非コーディング DNA 要素のトランスポゾンを介したランダム挿入の力は、その最適な染色体の位置の解決に使用されました。
与えられた DNA 要素の最適な染色体位置/フィットネス選択続いてトランスポゾンを介したランダムな挿入によって定められました。細菌、遺伝的要素の機能に関する遺伝的コンテキストの影響は評価することは困難することができます。近隣の遺伝子や複製関連遺伝子投与量から転写干渉位相効果を含むいくつかのメカニズムは、与えられた遺伝的要素の機能に影響があります。ここでは、大腸菌と単純な成長競争を使用して最も有利な場所実験選択の染色体への DNA 要素のランダムな統合を可能にする手法について述べる。メソッドは、ランダムな挿入、結合で適者生存のクローンの選択成長の利点は、実験のニーズに簡単に調整されているプロシージャのよく説明トランスポゾン ベース システムの利点を受け取ります。適者生存のクローンの性質は、複雑な多クローン集団の全ゲノム シーケンスまたは選択されたクローンの迅速同定のため歩きやすい遺伝子によって決定できます。ここでは、 DARS2、エシェリヒア属大腸菌の染色体複製開始を制御する DNA の非コード領域は例として使用されました。複製関連遺伝子の用量の影響を受けるDARS2の機能は知られています。近いDARS2をさらにアクティブになる、DNA の複製の起源に取得します。DARS2がDARS2の染色体に挿入されたランダムに-ひずみを削除します。個々 の挿入を含む結果のクローンはプールされ、何百世代のため互いに競った。最後に、適者生存のクローンは、特徴し、 DARS2元のDARS2の場所の近くに挿入が含まれて発見されました。
遺伝的要素の機能は、ゲノムでの位置によって影響を受けます。細菌、これは主に、隣接遺伝子、ローカル DNA のトポロジー、および/または複製関連遺伝子量のトランスクリプションによって干渉から結果します。特に、DNA 複製と偏析の過程の制御は、少なくとも一部では、非コーディング染色体領域で1とこれらの地域の適切な機能のゲノム位置/コンテキストに依存します。エシェリヒア属大腸菌、例としては、妹に必要なdifサイト染色体の解像度2KOPS シーケンス、染色体分離3に必要なデータ、 DARS1とDARS2の地域、(以下; 適切な染色体複製制御に必要な4). ここでDARS2非コード領域の研究に代表されるランダムな再配置、選択、および与えられた遺伝的要素の最適な遺伝的コンテキストの定量を可能にする手法を提案します。
大腸菌DnaA は、イニシエーター蛋白質 DNA 鎖、単一のレプリケーションの起源、oriC、開くとヘリカーゼ DnaB5,6、7の採用担当。AAA+ (すなわち、多様な活動に伴う Atpase) に属する DnaA タンパク質同様高い ATP、ADP をバインドできます、親和性5。DnaAATPのレベルのピーク開始時8、DnaAATPが上、多量体を形成oriC DNA 両面開口部9を起動します。開始後oriC hemimethylated に複製蛋白質の結合を含むメカニズムによって隔離のため再開始のため一時的に使用できなくされるoriC10,11。隔離中に DnaAATPのレベルは、少なくとも 2 つのメカニズムによって減少: DnaA (ライダー)12,13とデータの規制不活化-依存 DnaAATP加水分解 (DDAH)14 ,15。ライダーと DDAH の両方は、DnaAATPの DnaAADPへの変換を促進します。開始の新ラウンドは、前に DnaAADPは特定 DnaA 再アクティブ化シーケンス (邸宅) に DnaAATPに再活性化される: DARS1およびDARS216,17。染色体データ DARS1、および DARS2地域非コーディング、DnaAATPを調節するシャペロンのような方法で行動/DnaAADP相互変換。複製の起源の外に位置するこれらの地域はいずれかの複雑な DnaA のアセンブリを有効に不活化 (データ;14) または活性化 (DARS1およびDARS2;17) DnaA の。セルのDARS2を削除する質量の 2 倍の時間が、非同期レプリケーション開始15,16,18の結果を変更しません。ただし、 DARS2-フィットネスがある欠損細胞豊富な媒体で両方の継続的な成長の競争の間にまたはマウス腸18の植民地化の確立の間にそうしないと同質遺伝子野生型に比べてコスト。これは非同期/起源濃度の些細な変更が細菌フィットネスにマイナスの影響であることを示します。大腸菌染色体の対称性 (すなわち、 2 長さがほぼ等しいレプリケーション腕)19を維持する選択的な圧力があります。データ、 DARS1、およびDARS2領域に同じ相対的な間隔があるoriCすべて大腸菌株シーケンス18染色体サイズの大きな変化にもかかわらず。
ここでは、その機能に最適な染色体の位置の同定の例としてエシェリヒア属大腸菌のDARS2領域を用いてください。DARS2が NKBOR トランスポゾンと結果 NKBOR に挿入された:: その後ランダムに MG1655 のゲノムに挿入DARS2トランスポゾン ΔDARS2。我々 はこのように細胞のコレクションを生成された、それぞれの所有しているDARS2は染色体上の別の場所に配置します。体外競争実験、コレクション内のすべてのセルがプール、ポンドで推定 700 世代のための持続的な成長の間に互いに競ったかを行った。競争実験の結果監視/決定された南しみ、簡単な遺伝子を歩いて、全ゲノム シーケンス (WGS; を使用して図 1)。簡単な遺伝子を踏んで解決エンドポイント クローンは細胞周期のパラメーターを評価するフローサイトメトリーにより特徴づけられた.フローサイトメトリー解析、セル サイズ、DNA コンテンツ、および開始同期が多数のセルを測定できます。フローサイトメトリー、単一セルの流通過提供が、同時に放出される蛍光、DNA 含量の測定を収集フォトマルによって登録されますし、ステンド グラスの DNA を刺激する適切な波長の光線、細胞は DNA のステンド グラスします。前方散乱光は、細胞質量20の指標です。
ここでは提示の in vitro競争の実験、染色体の位置および遺伝的要素のゲノムのコンテキストの重要性に関連する質問に対処するため使用されます。メソッドは、公平な使いやすいです。
ここで使用した方法論は、技術遺伝的要素の最適な genomic 位置に関する難しい質問に答えるための活用します。(トランスポゾンを介した) 遺伝的要素のランダムな挿入、お互いの調査遺伝的要素の最適な位置を選択するに対抗するために作ることができるクローンの何千もの迅速かつ簡単のコレクションを有効に (すなわち、適者生存のクローン)。
ここでは、 …
The authors have nothing to disclose.
著者は、細菌のストレス応答と永続性 (BASP) ノボ ノルディスク財団とルンドベック財団、中心を通ってデンマークの国立研究財団 (DNRF120) からの助成金で賄われました。
Autoclaved Mili-Q water | None | ||
Electroporation Cuvettes, 0.1 cm | Thermo Fisher Scientific | P41050 | |
Bio-Rad MicroPulser Electroporation System | Bio-Rad | 165-2100 | |
LB Broth | Thermo Fisher Scientific | 12780029 | |
LB Agar, powder (Lennox L agar) | Thermo Fisher Scientific | 22700025 | |
Glycerol | Thermo Fisher Scientific | 17904 | |
Fisherbrand Plastic Petri Dishes | Fisher Scientific | S33580A | |
Falcon 50mL Conical Centrifuge Tubes | Fisher Scientific | 14-432-22 | |
Falcon 15mL Conical Centrifuge Tubes | Fisher Scientific | 14-959-53A | |
Nunc CryoTubes | Sigma-Aldrich | V7634 | |
Phusion High-Fidelity DNA Polymerase (2 U/µL) | Thermo Fisher Scientific | F530S | |
dATP, [α-32P]- 3000Ci/mmol 10mCi/ml, 250 µCi | PerkinElmer | BLU012H250UC | |
DECAprime II DNA Labeling Kit | Thermo Fisher Scientific | AM1455 | |
Spectrophotometer SF/MBV/03.32 | Pharmacia | ||
Hermle Centrifuge SF/MBV/03.46 | Hermle | ||
Ole Dich Centrifuge SF/MBV/03.29 | Ole Dich | ||
Eppendorftubes 1.5 mL | Sigma-Aldrich | T9661 | |
Eppendorftubes 2.0 mL | Sigma-Aldrich | T2795 | |
Sodium Chloride | Merck | 6404 | |
96% Ethanol | Sigma-Aldrich | 16368 | |
Trizma HCl | Sigma-Aldrich | T-3253 | |
Phenol Ultra Pure | BRL | 5509UA | |
Chloroform | Merck | 2445 | |
Ribonuclease A type II A | Sigma-Aldrich | R5000 | |
Sodiumdodecylsulphate (SDS) | Merck | 13760 | |
Lysozyme | Sigma-Aldrich | L 6876 | |
Isopropanol | Sigma-Aldrich | 405-7 | |
0.5M Na-EDTA pH 8.0 | BRL | 5575 UA | |
Kanamycin sulfate | Sigma-Aldrich | 10106801001 | |
PvuI (10 U/µL) | Thermo Fisher Scientific | ER0621 | |
UltraPure Agarose | Thermo Fisher Scientific | 16500500 | |
DNA Gel Loading Dye (6X) | Thermo Fisher Scientific | R0611 | |
Tris-Borate-EDTA buffer | Sigma-Aldrich | T4415 | |
Ethidium bromide | Sigma-Aldrich | E7637 | |
Hydrochloric acid | Sigma-Aldrich | 433160 | |
Sodium Hydroxide | Sigma-Aldrich | 71687 | |
Whatman 3MM papers | Sigma-Aldrich | WHA3030931 | |
SSC Buffer 20× Concentrate | Sigma-Aldrich | S6639 | |
Amersham Hybond-N+ | GE Healthcare | RPN119B | |
Ficoll 400 | Sigma-Aldrich | F8016 | |
Polyvinylpyrrolidone | Sigma-Aldrich | PVP40 | |
Bovine Serum Albumin – Fraction V | Sigma-Aldrich | 85040C | |
Deoxyribonucleic acid sodium salt from salmon testes | Sigma-Aldrich | D1626 | |
Carestream Kodak BioMax light film | Sigma-Aldrich | Z373494 | |
GenElute Gel Extraction Kit | Sigma-Aldrich | NA1111 | |
GenElute PCR Clean-Up Kit | Sigma-Aldrich | NA1020 | |
T100 Thermal Cycler | Bio-Rad | ||
SmartSpec Plus Spectrophotometer | Bio-Rad | ||
Rifampicin | Serva | 34514.01 | |
Cephalexin | Sigma-Aldrich | C4895 | |
Mithramycin | Serva | 29803.02 | |
Magnesium chloride hexahydrate | Sigma-Aldrich | 246964 | |
Apogee A10 instrument | Apogee |