Summary

Анализ специфичности гистонового антитела с пептидными микрочипами

Published: August 01, 2017
doi:

Summary

В этой рукописи описаны методы применения пептидной микрочиповой технологии для профилирования специфичности антител, которые распознают гистоны и их посттрансляционные модификации.

Abstract

Пост-трансляционные модификации (ПТМ) на белках гистонов широко изучены для их роли в регулировании структуры хроматина и экспрессии генов. Массовое производство и распределение антител, специфичных к ПТМ гистонов, значительно облегчило исследование этих признаков. Поскольку гистоновые ПТМ-антитела являются ключевыми реагентами для многих применений биохимии хроматина, необходим тщательный анализ специфичности антител для точной интерпретации данных и дальнейшего прогресса в этой области. Этот протокол описывает интегрированный конвейер для проектирования, изготовления и использования пептидных микрочипов для профилирования специфичности гистоновых антител. Аспекты дизайна и анализа этой процедуры облегчаются с помощью ArrayNinja, открытого программного обеспечения и интерактивного программного пакета, который мы недавно разработали для упрощения настройки форматов печати микрочипов. Этот конвейер использовался для скрининга большого количества коммерчески доступного и широко используемого гистонового PTM-антителаS, а данные, полученные в результате этих экспериментов, свободно доступны через онлайн-базу данных Спецификации антител Histone Antibody. Помимо гистонов, общая методика, описанная здесь, может быть широко применена для анализа специфичных к ПТМ антител.

Introduction

Геномная ДНК изящно упакована внутри ядра эукариотической клетки с белками гистонов с образованием хроматина. Повторяющейся субъединицей хроматина является нуклеосома, которая состоит из 147 пар оснований ДНК, обернутых вокруг октамерного ядра гистоновых белков – H2A, H2B, H3 и H4 1 . Хроматин широко организован в свободно упакованный эухроматин и плотно упакованные домены гетерохроматинов. Степень уплотнения хроматина регулирует степень, в которой белковые механизмы могут получить доступ к основной ДНК для осуществления фундаментальных процессов, связанных с ДНК, таких как репликация, транскрипция и восстановление.

Ключевыми регуляторами доступности генома в контексте хроматина являются ПТМ на неструктурированных хвостовых и основных доменах белков гистонов 2 , 3 . Гистоновые ПТМ функционируют напрямую, влияя на структуру хроматина 4 и косвенно проникаяH – набор белков-считывателей и связанных с ними макромолекулярных комплексов, которые имеют ремоделирование, ферментативную и лессификацию хроматина. 5 . Исследования функции гистонового ПТМ в течение последних двух десятилетий в подавляющем большинстве предполагают, что эти знаки играют ключевую роль в регулировании судьбы клеток, развития организма и инициирования / прогрессирования заболевания. Питаемые достижения в области масс – спектрометрия на основе протеомики технологии, более 20 уникальных гистоны PTMs на более чем 80 различных остатках гистонов были обнаружены 6. Примечательно, что эти модификации часто встречаются в комбинациях и согласуются с гипотезой «гистонового кода», многочисленные исследования показывают, что белки-считыватели нацелены на дискретные области хроматина посредством распознавания специфических комбинаций гистоновых ПТМ 7 , 8 , 9 . Ключевой задачей продвижения вперед будет назначение функций grКоторый содержит список гистоновых ПТМ и определяет, как конкретные комбинации гистоновых ПТМ организуют динамические функции, связанные с хроматином.

Антитела – это линчпиновые реагенты для обнаружения гистоновых ПТМ. Таким образом, более 1000 гистоновых ПТМ-специфических антител были коммерчески разработаны для использования в исследованиях биохимии хроматина. С быстрым развитием высокопроизводительной технологии секвенирования ДНК эти реагенты широко используются отдельными исследователями и крупномасштабными инициативами «дорожной карты» эпигеномики ( например , ENCODE и BLUEPRINT) в ChIP-seq (иммунопреципитация хроматина в сочетании с последовательностью следующего поколения ) Для создания пространственных карт с высоким разрешением распределения генома гистонов в геноме 10 , 11 . Однако недавние исследования показали, что специфичность антител к гистону ПТМ может быть очень переменной и что эти реагенты проявляют Приемлемые свойства, такие как распознавание нецелевого эпитопа, сильное положительное и отрицательное влияние со стороны соседних ПТМ и трудности, определяющие порядок модификации на определенном остатке ( например , моно-, ди- или триметиллизине) 12 , 13 , 14 , 15 , 16 , 17 , 18 . Поэтому для точной интерпретации данных, полученных с помощью этих ценных реагентов, необходим строгий контроль качества реагентов антител, специфичных к гистону ПТМ.

Технология Microarray позволяет одновременный опрос тысяч макромолекулярных взаимодействий в высокопроизводительном, воспроизводимом и миниатюрном формате. По этой причине были созданы различные платформы для микрочипов для анализа белковой ДНК 19 ,«> 20, белок-белок 21 и белок-пептидные взаимодействия 22. Действительно, гистоновые пептидные микрочипы появились как информационная платформа для исследования биохимических свойств хроматина, позволяющая высокопрофильное профилирование писателей, ластиков и считывателей гистоновых ПТМ 15 , 23 , 24 , а также для анализа специфичности антител к гистону 17 , 25. Вне их применения в исследованиях хроматина и эпигенетики гистоновые пептидные массивы имеют потенциальную полезность в качестве диагностического / прогностического теста для системной красной волчанки и других аутоиммунных заболеваний, Хроматиновые аутоантитела генерируются 26 , 27 .

Здесь мы описываем интегрированный конвейер, который мы разработали для проектирования, изготовления иДля получения микротипов гистоновых пептидов для получения профилей специфичности для антител, которые распознают гистоны и их ПТМ. Конвейер облегчается благодаря недавно разработанному ArrayNinja, интерактивному программному приложению с открытым исходным кодом, которое объединяет стадии проектирования и анализа экспериментов с микрочипами 28 . ArrayNinja работает лучше всего в Google Chrome. Вкратце, роботизированный контактный микрочиповый принтер используется для осаждения библиотеки биотин-конъюгированных гистоновых пептидов в определенных положениях на стеклянных микроскопах, покрытых стрептавидином. Затем массивы можно использовать в конкурентном и параллельном анализе для опроса антитело-эпитопных взаимодействий ( рис. 1 ). Библиотека пептидов состоит из сотен уникальных синтетических пептидов, содержащих PTM (ацетилирование лизина, метилирование лизина / аргинина и фосфорилирование серина / треонина) и в соответствующих комбинациях, в основном полученных из наборов данных протеомики. Методы синтеза и валидации пептидов Подробно описаны в других разделах 23 . Данные, полученные в ходе наших текущих скрининговых исследований скрининга антител к гистону, использующих эту платформу массивов, архивируются на общедоступном веб-ресурсе, базе данных специфичности антител Histone (www.histoneantibodies.com). Примечательно, что гистоновые пептидные микрочипы, изготовленные с вариациями этого протокола, также широко использовались для характеристики активности досок 8 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 гистоновых ПТМ-считывателей для профилирования гистона Запись PTT и ластик 24 .

/files/ftp_upload/55912/55912fig1.jpg "/>
Рисунок 1: Мультяшное изображение пошаговой процедуры скрининга антител на микрочипе гистонового пептида. Биотинилированные гистоновые пептиды, содержащие определенные посттрансляционные модификации (красные и синие круги), совместно печатаются с биотин-флуоресцеином на стекле, покрытом стрептавидином. Положительные взаимодействия визуализируются как красная флуоресценция. Нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.

Protocol

1. Установка и запуск ArrayNinja Загрузите и установите Oracle Virtual Box с сайта www.virtualbox.org. Загрузите и распакуйте виртуальную машину ArrayNinja (VM) с сайта http://research.vai.org/Tools/arrayninja. Откройте Virtual Box и добавьте виртуальную машину ArrayNinja, нажав «Машина», «Добавить» и выберите arrayninja.vbox из папки…

Representative Results

Этот протокол использовался для разработки и изготовления платформы пептидного микрочипа для анализа специфичности антитела к гистону ПТМ. Массив запрашивает библиотеку из более чем 300 уникальных пептидных объектов (20-40 остатков в длину), представляющих многие изве?…

Discussion

Надежность антител в приложениях для биомедицинских исследований имеет первостепенное значение 46 , 47 . Это особенно актуально в биохимии хроматина, учитывая положение антител в качестве ключевых инструментов для большинства методов, разработанных для …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была частично поддержана Научно-исследовательским институтом Ван Анделя и грантом исследований Национального института здоровья (CA181343) на SBR

Materials

Printing Buffer ArrayIt PPB
BSA Omnipure 2390
Streptavidin-coated glass microscope slides Greiner Bio-one 439003-25
polypropylene 384 well plate Greiner Bio-one 784201
Biotin-fluorescein Sigma 53608
contact microarray printer Aushon 2470 Aushon 2470 Microarray Printer
contact microarray printer Gene Machines OmniGrid 100 OmniGrid Microarray Printer
PBS Invitrogen 14190
Blocking Buffer ArrayIt SBB
Hydrophobic wax pen Vector Labs H-4000 ImmEdge Hydrophobic Barrier PAP Pen
Silicon Gasket Grace Bio-labs 622511
Hybridization Vessel Thermo Scientific 267061 or similar vessel
Fluorescent-dye conjugated secondary antibody Life Technologies A-21244 Alexa Fluor 647 (anti-rabbit)
Fluorescent-dye conjugated secondary antibody Life Technologies A-21235 Alexa Fluor 647 (anti-mouse)
Wax Imprinter ArrayIt MSI48
Tween-20 Omnipure 9490
Microarray Scanner Innopsys InnoScan 1100AL or equivalent microarray scanner
EipTitan Histone Peptide Microarray Epicypher 112001
AbSurance Pro Histone Peptide Microarray Millipore 16668
MODified Histone Peptide Array Active Motif 13001
Histone Code Peptide Microarrays JPT His_MA_01
Wax Royal Oak GulfWax for wax imprinter
Humidified Microarray Slide Hybridization Chamber VWR 97000-284
High throughput microscope slide washing chamber ArrayIt HTW
Microscope slide centrifuge VWR 93000-204
Antibody 1 Abcam 8898
Antibody 2 Millipore 07-473
Biotinylated histone peptide EpiCypher 12-0001 Example peptide. Similar peptides with various modifications are available from several commercial sources.
ImageMagick https://www.imagemagick.org/script/index.php
ArrayNinja https://rothbartlab.vai.org/tools/

References

  1. van Steensel, B. Chromatin: constructing the big picture. EMBO J. 30 (10), 1885-1895 (2011).
  2. Kouzarides, T. Chromatin modifications and their function. Cell. 128 (4), 693-705 (2007).
  3. Rothbart, S. B., Strahl, B. D. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 1839 (8), 627-643 (2014).
  4. Shogren-Knaak, M., Ishii, H., Sun, J. -. M., Pazin, M. J., Davie, J. R., Peterson, C. L. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 311 (5762), 844-847 (2006).
  5. Musselman, C. A., Lalonde, M. -. E., Côté, J., Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 19 (12), 1218-1227 (2012).
  6. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D., Zhao, Y. SnapShot: Histone Modifications. Cell. 159 (2), 458 (2014).
  7. Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature. 403 (6765), 41-45 (2000).
  8. Rothbart, S. B., Krajewski, K., et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol. 19 (11), 1155-1160 (2012).
  9. Wang, Z., Zang, C., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 40 (7), 897-903 (2008).
  10. Stunnenberg, H. G., Hirst, M. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell. 167 (5), 1145-1149 (2016).
  11. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 489 (7414), 57-74 (2012).
  12. Egelhofer, T. A., Minoda, A., et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 18 (1), 91-93 (2011).
  13. Bock, I., Dhayalan, A., Kudithipudi, S., Brandt, O., Rathert, P., Jeltsch, A. Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics. 6 (2), 256-263 (2011).
  14. Busby, M., Xue, C., et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 9, 49 (2016).
  15. Fuchs, S. M., Krajewski, K., Baker, R. W., Miller, V. L., Strahl, B. D. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol. 21 (1), 53-58 (2011).
  16. Kungulovski, G., Jeltsch, A. Quality of histone modification antibodies undermines chromatin biology research. F1000Research. 4, 1160 (2015).
  17. Rothbart, S. B., Dickson, B. M., et al. An Interactive Database for the Assessment of Histone Antibody Specificity. Mol Cell. 59 (3), 502-511 (2015).
  18. Rothbart, S. B., Lin, S., et al. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies. Sci Rep. 2, 489 (2012).
  19. Berger, M. F., Bulyk, M. L. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc. 4 (3), 393-411 (2009).
  20. Hu, S., Wan, J., et al. DNA methylation presents distinct binding sites for human transcription factors. eLife. 2, e00726 (2013).
  21. Moore, C. D., Ajala, O. Z., Zhu, H. Applications in high-content functional protein microarrays. Curr Opin Chem Biol. 30, 21-27 (2016).
  22. MacBeath, G., Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science. 289 (5485), 1760-1763 (2000).
  23. Rothbart, S. B., Krajewski, K., Strahl, B. D., Fuchs, S. M. Peptide microarrays to interrogate the “histone code” . Methods Enzymol. 512, 107-135 (2012).
  24. Cornett, E. M., Dickson, B. M., et al. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray. Methods Enzymol. 574, 31-52 (2016).
  25. Nady, N., Min, J., Kareta, M. S., Chédin, F., Arrowsmith, C. H. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci. 33 (7), 305-313 (2008).
  26. Dieker, J., Berden, J. H., et al. Autoantibodies against Modified Histone Peptides in SLE Patients Are Associated with Disease Activity and Lupus Nephritis. PLoS ONE. 11 (10), (2016).
  27. Price, J. V., Tangsombatvisit, S., et al. “On silico” peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat Med. 18 (9), 1434-1440 (2012).
  28. Dickson, B. M., Cornett, E. M., Ramjan, Z., Rothbart, S. B. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments. Methods Enzymol. 574, 53-77 (2016).
  29. Gatchalian, J., Fütterer, A., et al. Dido3 PHD modulates cell differentiation and division. Cell Rep. 4 (1), 148-158 (2013).
  30. Cai, L., Rothbart, S. B., et al. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell. 49 (3), 571-582 (2013).
  31. Rothbart, S. B., Dickson, B. M., et al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27 (11), 1288-1298 (2013).
  32. Ali, M., Rincón-Arano, H., et al. Molecular basis for chromatin binding and regulation of MLL5. Proc Natl Acad Sci U S A. 110 (28), 11296-11301 (2013).
  33. Kinkelin, K., Wozniak, G. G., Rothbart, S. B., Lidschreiber, M., Strahl, B. D., Cramer, P. Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue. Proc Natl Acad Sci U S A. 110 (38), 15277-15282 (2013).
  34. Klein, B. J., Piao, L., et al. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep. 6 (2), 325-335 (2014).
  35. Kim, H. -. S., Mukhopadhyay, R., et al. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep. 6 (5), 892-905 (2014).
  36. Greer, E. L., Beese-Sims, S. E., et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7 (1), 113-126 (2014).
  37. Andrews, F. H., Tong, Q., et al. Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Rep. 16 (12), 3195-3207 (2016).
  38. Sidoli, S., Lin, S., Karch, K. R., Garcia, B. A. Bottom-Up and Middle-Down Proteomics Have Comparable Accuracies in Defining Histone Post-Translational Modification Relative Abundance and Stoichiometry. Anal Chem. 87 (6), 3129-3133 (2015).
  39. Tsukada, Y., Ishitani, T., Nakayama, K. I. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 24 (5), 432-437 (2010).
  40. Tachibana, M., Sugimoto, K., Fukushima, T., Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 276 (27), 25309-25317 (2001).
  41. Wu, H., Chen, X., et al. Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res. 21 (2), 365-367 (2011).
  42. Koch, C. M., Andrews, R. M., et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17 (6), 691-707 (2007).
  43. Okitsu, C. Y., Hsieh, J. C. F., Hsieh, C. -. L. Transcriptional Activity Affects the H3K4me3 Level and Distribution in the Coding Region. Mol Cell Biol. 30 (12), 2933-2946 (2010).
  44. Zentner, G. E., Tesar, P. J., Scacheri, P. C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21 (8), 1273-1283 (2011).
  45. Garske, A. L., Oliver, S. S., et al. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol. 6 (4), 283-290 (2010).
  46. Baker, M. Reproducibility crisis: Blame it on the antibodies. Nature. 521 (7552), 274-276 (2015).
  47. Bradbury, A., Plückthun, A. Reproducibility: Standardize antibodies used in research. Nature. 518 (7537), 27-29 (2015).
  48. Nguyen, U. T. T., Bittova, L., et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods. 11 (8), 834-840 (2014).
  49. Frank, R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron. 48 (42), 9217-9232 (1992).
  50. Hilpert, K., Winkler, D. F. H., Hancock, R. E. W. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc. 2 (6), 1333-1349 (2007).
  51. Kudithipudi, S., Kusevic, D., Weirich, S., Jeltsch, A. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays. J Vis Exp. (93), e52203 (2014).

Play Video

Cite This Article
Cornett, E. M., Dickson, B. M., Rothbart, S. B. Analysis of Histone Antibody Specificity with Peptide Microarrays. J. Vis. Exp. (126), e55912, doi:10.3791/55912 (2017).

View Video