Summary

在细胞分化过程中光介导的可逆调节丝裂原活化蛋白激酶途径<em>爪蟾</em>胚胎发育

Published: June 15, 2017
doi:

Summary

该协议描述了在细胞分化和非洲爪蟾胚胎发育过程中调节丝裂原活化蛋白激酶(MAPK)活性的光遗传策略。这种方法允许哺乳动物细胞培养物和多细胞活生物体如非洲爪蟾胚胎中具有高空间和时间分辨率的可逆激活MAPK信号通路。

Abstract

激酶活性对于多种细胞功能至关重要,包括细胞增殖,分化,迁移和细胞凋亡。在早期胚胎发育过程中,激酶活性在胚胎中是高度动态和广泛的。药理学和遗传学方法通常用于探索激酶活性。不幸的是,使用这些策略来实现优越的空间和时间分辨率是很困难的。此外,在活细胞和多细胞生物体中以可逆的方式控制激酶活性是不可行的。这种限制仍然是在开发和分化期间实现对激酶活性的定量了解的瓶颈。这项工作提出了利用含有可光活化蛋白拟南芥隐色素2(CRY2)和密码子相互作用的基质 – 螺旋 – 环 – 螺旋(CIBN)的N-末端结构域的双顺反子系统的光遗传策略。黑白棋有丝分裂原激活的蛋白激酶(MAPK)信号通路的活化可以通过活细胞中的光介导的蛋白质易位实现。这种方法可以应用于哺乳动物细胞培养物和活的脊椎动物胚胎。这种双顺反子系统可以被推广以控制具有相似活化机制的其它激酶的活性并且可以应用于其它模型系统。

Introduction

生长因子参与广泛的细胞功能,包括增殖,分化,迁移和凋亡,并在许多生物学事件中发挥关键作用,包括胚胎发育,衰老和精神状态调节1,2,3,4 5 。许多生长因子通过复杂的细胞内信号传导级联信号。这些信号事件通常以精确调节的方式可逆蛋白磷酸化操作6,7 。因此,对蛋白激酶的信号转导结果的理解,它们负责蛋白质磷酸化,这是非常重要的。

不同的生长因子通过相当普遍的细胞内信号网络起作用,即使它们刺激dist细胞反应8,9 。受体酪氨酸激酶的常见细胞内介质包括Ras,Raf,细胞外信号调节激酶(ERK),丝裂原活化蛋白激酶(MAPK)/ ERK激酶(MEK),磷酸肌醇3-激酶(PI3K),Akt和磷脂酶Cγ (PLCγ) 10,11 。积累的证据表明信号多样性和特异性取决于信号传导活动的空间和时间调节12 。例如,在大鼠嗜铬细胞瘤细胞(PC12)中,导致细胞增殖的表皮生长因子(EGF)刺激瞬时激活ERK通路9 。另一方面,导致细胞分化的神经生长因子(NGF)的刺激以持续的方式激活ERK通路9,13。在培养的r在海马神经元中,脑源性神经营养因子(BDNF)的瞬时信号传导促进原发神经突生长,而持续的信号传导导致神经突分支增加14 。在早期胚胎发育过程中,磷酸化的ERK活性在时间上是动态的,并且在胚胎中是广泛的6 。早期非洲爪蟾胚胎发生期间最近的遗传筛选显示ERK和Akt信号级联,两种下游原生生长因子途径,显示阶段特异性激活谱7 。因此,对激酶信号转导结果的理解需要能够以足够的分辨率探测激酶活性的空间和时间特征的工具。

探索发育过程中信号转导的动态特性的常规实验方法缺乏理想的空间和时间分辨率。例如,药理学方法使用小化学或生物分子刺激或抑制细胞和组织中的信号转导。这些小分子的扩散性质使得将其作用限制在特定的感兴趣区域15是有挑战性的。遗传方法( 转基因,Cre-Lox系统或诱变)通常导致靶基因表达或蛋白活性的不可逆活化或抑制16,17,18。 Tet-On / Tet-Off系统19提供改进的基因转录的时间控制,但是缺乏严格的空间控制,因为它依赖于四环素的扩散。化学诱导的蛋白质二聚化20或光解蛋白21,22,23,24中的最新发展有很大的增强作用信号网络的时间控制。然而,由于笼式化学品的扩散性质,空间控制仍然是具有挑战性的。

利用光的功能来控制蛋白质 – 蛋白质相互作用的最近出现的光生代谢途径允许以高时空精度和可逆性调节信号通路。在控制神经元激发25,26,27之后不久,光遗传学被扩展到控制其他细胞过程,如基因转录,翻译,细胞迁移,分化和凋亡28,29,30,31,32,33 34 。使用p的策略最近开发了可光活化蛋白对拟南芥隐色素2(CRY2)蛋白和密码子相互作用的碱性 – 螺旋 – 环 – 螺旋(CIBN)的N末端结构域,以控制哺乳动物细胞和非洲爪蟾胚胎中的Raf1激酶活性。 CRY2在蓝光刺激下与CIBN结合,CRY2 / CIBN蛋白复合物在黑暗中自发解离34 。蓝光激发CRY2辅因子,黄素腺嘌呤二核苷酸(FAD),其导致CRY2的构象变化及其随后与CIBN的结合。可以通过FAD结合口袋中的突变产生CRY2的组成型活性(W374A)和黄素缺乏型(D387A)突变体:CRY2 W374A突变体独立于光而与CIBN结合,而CRY2 D387A突变体不结合蓝色的CIBN光刺激36,37 。光生系统描述了我该方案使用野生型CRY2和CIBN诱导活细胞中的蛋白质易位介导的Raf1活化。已知Raf1的膜募集增强其活性38 。在该系统中,串联CIBN模块锚定于质膜,CRY2-mCherry与Raf135的N末端融合。在没有蓝光的情况下,CRY2-mCherry-Raf1停留在细胞质中,Raf1不活跃。蓝光刺激诱导CRY2-CIBN结合,并将Raf1募集到质膜上,其中Raf1被激活。 Raf激活刺激Raf / MEK / ERK信号级联。 CRY2-和CIBN-融合蛋白均以双顺反子基因系统编码。该策略可以被推广以控制其他激酶,例如Akt,其激活状态也可以通过细胞中的蛋白质移位而被打开39 。这项工作提出了在哺乳动物细胞培养中实现这种光遗传策略的详细协议res和多细胞生物。

Protocol

动物研究是按照伊利诺斯机构动物保护和使用委员会(IACUC)和伊利诺伊州动物资源大学(DAR)制定的指导方针进行的。 蛋白定位在BHK21哺乳动物细胞培养中的光学诱导注意:步骤1.1-1.3提供了一种组装细胞培养室,用于通常具有较短工作距离的高倍率物镜( 例如, 63X或100X)进行成像的方法。这些目标需要薄玻璃盖玻片( 例如, #1.5,170μm厚?…

Representative Results

可光活化蛋白质对的比例表达: 图1A显示了基于猪teschovirum的双顺反子基因构建体CRY2-mCherry-Raf1-P2A-CIBN-CIBN-GFP-CaaX(称为CRY2-2A-2CIBN)的设计, 112A(P2A)肽,其在哺乳动物细胞系42中显示出最高的核糖体跳跃效率。在以前的工作中,已经确定CIBN-GFP-CaaX:CRY2-mCherry-Raf1的最佳比例为2:135。该配置允许CRY2-mCherry-Raf1的足够的膜募集和活化( …

Discussion

建造灯箱时,应测量各个LED的功率。根据以前的经验,由于制造差异,功率输出可能因个别LED而异。选择一组功率输出在10%以内的LED。可以针对不同类型的细胞培养容器( 例如 6孔或24孔板)修改LED的数量,限流电阻和功率输入。功率为0.2mW / cm 2的 24小时的光照不会引起可检测的光毒性44 。如果使用更高的功率,请考虑使用间歇光来减少发热和光毒性。在本方案?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到伊利诺伊大学厄瓜多尔香槟分校(UIUC)和美国国立卫生研究院(NIGMS R01GM111816)的支持。

Materials

Glass coverslip  VWR 48393 230 Substrate for live cell imaging
Coverslip holder  Newcomer Supply 6817B Holder for coverslips
Detergent  ThermoFisher 16 000 104 For cleaning coverslips
Boric acid  Sigma-Aldrich B6768-500G For making PLL buffer
Disodium tetraborate Sigma-Aldrich 71996-250G For making  PLL buffer
Plastic beaker Nalgene 1201-1000 For cleaning coverslips
Sodium hydroxide  Sigma-Aldrich 221465-2.5KG For adjust pH
Poly-L-lysine hydrobromide Sigma-Aldrich P1274-500MG For coating coverslip
Diethylpyrocarbonate (DEPC)-Treated Water ThermoFisher Scientific 750024 For DNA preparation
Cover Glass Forceps Ted Pella 5645 Cover glass handling
Tissue cutlure dish Thermofisher 12565321 Cell culture dish
Sterile centrifuge tubes ThermoFisher 12-565-271 Buffer storage
Transfection Reagent ThermoFisher R0534 Transfection
CO2-independent medium ThermoFisher 18045088 For live cell imaging
Polydimethylsiloxane (PDMS) Ellsworth Adhesives 184 SIL ELAST KIT 0.5KG Form make cell chamber
Plasmid Maxiprep kit Qiagen 12965 Plasmid preparation
DMEM medium ThermoFisher 11965-084 Cell culturing medium component
F12K medium ThermoFisher 21127022 Cell culturing medium component
Horse serum ThermoFisher 16050122 Cell culturing medium component
Fetal Bovine Serum Signa-Aldrich 12303C-500 mL Cell culturing medium component
Penicillin-Streptomycin-Glutamine ThermoFisher 10378016 Cell culturing medium component
Trypsin (0.25%), phenol red ThermoFisher Scientific 15050065  For mammalian cell dissociation
Agarose Fisher Scientific BP1356-100 For DNA preparation
Ficoll PM400 GE Heathcare Life Sciences 17-5442-02 For embryo buffer
L-Cysteine hydrochloride monohydrate Sigma-Aldrich 1.02839.0025 Oocyte preparation
ApaI ThermoFisher FD1414 For linearization of plasmids
Dnase I ThermoFisher AM2222 For removing DNA template in the in vitro transcription assay
Index-match materials (immersion oil) Thorlabs MOIL-20LN For matching the index between sample substrate and objective
Blue LED Adafruit 301 Light source for optogenetic stimulation
Resistor kit Amazon EPC-103 current-limiting resistor
Aluminum boxes BUD Industries AC-401 light box 
BreadBoard Jekewin 837654333686 For making LED array
Hook up Wire Electronix Express 27WK22SLD25 For making LED array
Relay Module Jbtek SRD-05VDC-SL-C For intermittent light control
DC Power Supply  TMS DCPowerSupply-LW-(PS-305D) Power supply for LED
Silicon Power Head Thorlabs S121C For light intensity measurement
Power meter Thorlabs PM100D  For light intensity measurement
Microscope Leica Biosystems DMI8 For live cell imaging
BioSafety Cabinet ThermoFisher 1300 Series A2 For mammalian cell handling
CO2 incubator ThermoFisher Isotemp For mammalian cell culturing
Stereo microscope Leica M60 For embryo micro-manipulation
Microinjector Narishige IM300 For embryo microinjection
Micropipette puller Sutter Instruments P87 Needle puller
in vitro transcription kit ThermoFisher AM1340 For in vitro transcription. The kit includes nuclease-free water, SP6 RNA  Polymerase, ribonucleotide mixture, cap analog, lithium choride precipitation solution, and spin column  
RNA purfication kit Qiagen 74104 Silica-membrane spin column for purification of synthesized RNA 
Convection oven MTI corporation  EQ-DHG-9015 PDMS curing
Centrifugal mixer and teflon container THINKY AR310 For mixing PDMS
Silicon wafer UniversityWafer 452 Base for making PDMS  devices
Blade Techni Edge 01-801 For cutting PDMS
Capillary glass Sutter Instruments BF100-58-10 For fabrication of injecting needles. 

References

  1. Schlessinger, J., Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron. 9 (3), 383-391 (1992).
  2. Thisse, B., Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287 (2), 390-402 (2005).
  3. Perrimon, N., Pitsouli, C., Shilo, B. Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 4 (8), a005975 (2012).
  4. Salles, F. H., et al. Mental disorders, functional impairment, and nerve growth factor. Psychol Res Behav Manag. 10, 9-15 (2017).
  5. Basson, M. A. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol. 4 (6), (2012).
  6. Schohl, A., Fagotto, F. beta-catenin, MAPK and Smad signaling during early Xenopus development. Development. 129 (1), 37-52 (2002).
  7. Zhang, S. W., Li, J. J., Lea, R., Amaya, E., Dorey, K. A Functional Genome-Wide In Vivo Screen Identifies New Regulators of Signalling Pathways during Early Xenopus Embryogenesis. PloS one. 8 (11), e79469 (2013).
  8. Sweeney, C., et al. Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem. 276 (25), 22685-22698 (2001).
  9. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 80 (2), 179-185 (1995).
  10. Vandergeer, P., Hunter, T., Lindberg, R. A. Receptor Protein-Tyrosine Kinases and Their Signal-Transduction Pathways. Annu Rev Cell Biol. 10, 251-337 (1994).
  11. Lemmon, M. A., Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell. 141 (7), 1117-1134 (2010).
  12. Hunter, T. Signaling–2000 and beyond. Cell. 100 (1), 113-127 (2000).
  13. Qiu, M. S., Green, S. H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron. 9 (4), 705-717 (1992).
  14. Ji, Y., et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. 13 (3), 302-309 (2010).
  15. Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. 192, 189-221 (2000).
  16. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods-a Companion to Methods in Enzymology. 14 (4), 381-392 (1998).
  17. Ling, M. M., Robinson, B. H. Approaches to DNA mutagenesis: an overview. Anal Biochem. 254 (2), 157-178 (1997).
  18. Gama Sosa, M. A., De Gasperi, R., Elder, G. A. Animal transgenesis: an overview. Brain Struct Funct. 214 (2-3), 91-109 (2010).
  19. Wanka, F., et al. Tet-on, or Tet-off, that is the question: Advanced conditional gene expression in Aspergillus. Fungal Genet Biol. 89, 72-83 (2016).
  20. Karginov, A. V., Ding, F., Kota, P., Dokholyan, N. V., Hahn, K. M. Engineered allosteric activation of kinases in living cells. Nat Biotechnol. 28 (7), 743-747 (2010).
  21. Liu, Q. Y., Deiters, A. Optochemical Control of Deoxyoligonucleotide Function via a Nucleobase-Caging Approach. Accounts of Chemical Research. 47 (1), 45-55 (2014).
  22. Arbely, E., Torres-Kolbus, J., Deiters, A., Chin, J. W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J Am Chem Soc. 134 (29), 11912-11915 (2012).
  23. Gautier, A., Deiters, A., Chin, J. W. Light-activated kinases enable temporal dissection of signaling networks in living cells. J Am Chem Soc. 133 (7), 2124-2127 (2011).
  24. Nguyen, D. P., et al. Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells. J Am Chem Soc. 136 (6), 2240-2243 (2014).
  25. Deisseroth, K. Optogenetics. Nat Methods. 8 (1), 26-29 (2011).
  26. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 8 (9), 1263-1268 (2005).
  27. Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R. H. Light-activated ion channels for remote control of neuronal firing. Nat Neurosci. 7 (12), 1381-1386 (2004).
  28. Zhang, K., Cui, B. Optogenetic control of intracellular signaling pathways. Trends in Biotechnology. 33 (2), 92-100 (2015).
  29. Tischer, D., Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Bio. 15 (8), 551-558 (2014).
  30. Kim, B., Lin, M. Z. Optobiology: optical control of biological processes via protein engineering. Biochemical Society Transactions. 41 (5), 1183-1188 (2013).
  31. Tucker, C. L. Manipulating cellular processes using optical control of protein-protein interactions. Prog Brain Res. 196, 95-117 (2012).
  32. Toettcher, J. E., Gong, D. Q., Lim, W. A., Weiner, O. D. Light Control of Plasma Membrane Recruitment Using the Phy-Pif System. Method Enzymol. 497, 409-423 (2011).
  33. Zoltowski, B. D., Gardner, K. H. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry. 50 (1), 4-16 (2011).
  34. Kennedy, M. J., et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods. 7 (12), 973-975 (2010).
  35. Krishnamurthy, V. V., et al. Reversible optogenetic control of kinase activity during differentiation and embryonic development. Development. 143 (21), 4085-4094 (2016).
  36. Liu, H., et al. Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis. Science. 322 (5907), 1535-1539 (2008).
  37. Li, X., et al. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci U S A. 108 (51), 20844-20849 (2011).
  38. Leevers, S. J., Paterson, H. F., Marshall, C. J. Requirement for Ras in Raf Activation Is Overcome by Targeting Raf to the Plasma-Membrane. Nature. 369 (6479), 411-414 (1994).
  39. Kohn, A. D., Takeuchi, F., Roth, R. A. Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem. 271 (36), 21920-21926 (1996).
  40. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  41. Sive, H. L., Grainger, R. M., Harland, R. M. . Early Development of Xenopus laevis: A Laboratory Manual. , (2000).
  42. Kim, J. H., et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PloS one. 6 (4), e18556 (2011).
  43. Ishimura, A., et al. Oncogenic Met receptor induces ectopic structures in Xenopus embryos. Oncogene. 25 (31), 4286-4299 (2006).
  44. Zhang, K., et al. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth. PloS one. 9 (3), e92917 (2014).
  45. Mohanty, S. K., Lakshminarayananan, V. Optical Techniques in Optogenetics. J Mod Opt. 62 (12), 949-970 (2015).
  46. Taslimi, A., et al. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nature chemical biology. 12 (6), 425-430 (2016).
  47. Kawano, F., Suzuki, H., Furuya, A., Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun. 6, 6256 (2015).
  48. Wang, H., et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods. 13 (9), 755-758 (2016).
  49. Chang, K. Y., et al. Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat Commun. 5, 4057 (2014).
  50. Boulina, M., Samarajeewa, H., Baker, J. D., Kim, M. D., Chiba, A. Live imaging of multicolor-labeled cells in Drosophila. Development. 140 (7), 1605-1613 (2013).
  51. Liu, H., Gomez, G., Lin, S., Lin, C. Optogenetic control of transcription in zebrafish. PLoS One. 7 (11), e50738 (2012).
  52. Buckley, C. E., et al. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo. Dev Cell. 36 (1), 117-126 (2016).
  53. Motta-Mena, L. B., et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nature chemical biology. 10 (3), 196-202 (2014).
  54. Beyer, H. M., et al. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synth Biol. 4 (9), 951-958 (2015).

Play Video

Cite This Article
Krishnamurthy, V. V., Turgeon, A. J., Khamo, J. S., Mondal, P., Sharum, S. R., Mei, W., Yang, J., Zhang, K. Light-mediated Reversible Modulation of the Mitogen-activated Protein Kinase Pathway during Cell Differentiation and Xenopus Embryonic Development. J. Vis. Exp. (124), e55823, doi:10.3791/55823 (2017).

View Video