マイクロ/ナノスケールでの高精度ひずみ分布測定のための2ピクセルおよびマルチピクセルサンプリング方法を特徴とするサンプリングモアレ技術をここに示します。
この作業では、フルフィールドマイクロ/ナノスケール変形測定のためのサンプリングモアレ技術の測定手順と原理について説明します。開発された技術は、再構成された乗算モアレ法または空間位相シフトサンプリングモアレ法を使用するという2つの方法で実行できます。標本グリッドピッチが約2ピクセルの場合、2ピクセルサンプリングのモアレ縞が生成されて、変形測定のための乗算モアレパターンが再構成される。変位と歪みの両方の感度は、同じ広い視野の従来の走査モアレ法の2倍です。標本グリッドピッチが3ピクセル前後である場合、マルチピクセルサンプリングモアレ縞が生成され、空間位相シフト技法が全フィールド変形測定のために組み合わされる。ひずみの測定精度が大幅に向上し、自動バッチ測定が容易に実現できます。両方の方法は、伝統的なモアレ技術のように、試料または走査線を回転させることなく、単一ショットグリッド画像から2次元(2D)ひずみ分布を測定することができる。例として、2つの炭素繊維強化プラスチック試験片のせん断ひずみを含む2次元変位およびひずみ分布を3点曲げ試験で測定した。提案された技術は、様々な材料の機械的特性、亀裂発生および残留応力の非破壊的定量評価において重要な役割を果たすことが期待される。
マイクロ/ナノスケールの変形測定は、機械的特性、不安定性挙動、残留応力、および高度材料の割れ発生を評価するために極めて不可欠である。光学技術は非接触、全視野、および非破壊であるため、過去数十年間の変形測定のために様々な光学的方法が開発されている。近年、マイクロ/ナノスケール変形計測技術には、モアレ法1,2,3,4 、幾何位相解析(GPA) 5,6 、フーリエ変換(FT)、デジタル画像相関(DIC)、電子スペックルパターン干渉計(ESPI)。これらの技術の中で、複数の周波数が存在するので、GPAおよびFTは複雑な変形測定にはあまり適していない。 DIC法はsim変形キャリアはランダムなスペックルなので、ノイズに対しては無力です。最後に、ESPIは振動に強く敏感です。
マイクロ/ナノスケールのモアレ法の中で、最も一般的に使用されている方法は、電子走査モアレ7,8,9 、レーザー走査モアレ10,11 、原子間力顕微鏡(AFM)モアレ12などの顕微鏡走査モアレ法であるデジタル/オーバーラップモアレ13,14,15方法、および乗算/フラクショナルモアレ方法16,17などのいくつかの顕微鏡ベースのモアレ方法が含まれる。走査モアレ法は、広い視野、高いレゾリューションlution、ランダムノイズに対する無感覚。しかし、従来の走査モアレ法は、2つの方向にモアレ縞を生成するために、試料ステージまたは走査方向を90°回転させ、2回走査する必要があるため、2D歪み測定には不都合である。回転と二重走査プロセスは、回転誤差を導入し、2Dひずみの測定精度に深刻な影響を与え、特にせん断ひずみに対して長時間かかる。時間位相シフト技法19,20 は、変形測定精度を向上させることができるが、動的テストには適さない時間および特別な位相シフト装置を必要とする。
サンプリングモアレ法21,22 は、変位測定において高い精度を有しており、主に、自動車の場合のブリッジのたわみ測定に使用されているお尻。サンプリングモアレ法をミクロ/ナノスケールの2Dひずみ測定に拡張するために、2ピクセルサンプリングのモアレ縞から新たに再構成された乗算モアレ法が開発された。この方法では、測定値が2倍に感度が高く、走査モアレ法が維持される。さらに、空間位相シフトサンプリングモアレ法は、マルチピクセルサンプリングモアレ縞からも開発され、高精度の歪み測定が可能です。このプロトコルは、詳細なひずみ測定手順を紹介し、研究者やエンジニアが材料や製品の製造プロセスを改善し、変形を測定する方法を学ぶのを助けると期待されています。
説明された技術では、試片上に周期的なパターンが存在しない場合、1つの困難なステップは、マイクロ/ナノスケールの格子または格子(格子と略記)製造26である。グリッドピッチは、変形測定のための重要なパラメータであるため、変形前に均一でなければならない。材料が金属、金属合金またはセラミックである場合、UVまたは加熱ナノインプリントリソグラフィ(NIL?…
The authors have nothing to disclose.
この研究は、内閣府が運営する構造物材料(SIP-IMASM)のための革新的測定・解析ユニットD66号(D66号)の閣僚級戦略イノベーション推進計画(JSPS KAKENHI、助成金JP16K17988およびJP16K05996)によって支持された。著者はDrsにも感謝しています。 NIMSの岸本聡氏と内藤君義氏のCFRP資料
Automatic Polishing Machine | Marumoto Struers K.K. | LaboPol-30, Labor Force-100 | |
Carbon Fiber Reinforced Plastic | Mitsubishi Plastics, Inc. | HYEJ16M95DHX1 | |
Computer | DELL Japan | VOSTRO | Can be replaced with another computer with C++ programming language |
Image Recording Software | Lasertec Corporation | LMEYE7 | Installed in a laser scanning microscope |
Ion Coater | Japan Electron Optics Laboratory Ltd. | JEC3000F | |
Laser Scanning Microscope | Lasertec Corporation | OPTELICS HYBRID | |
Nanoimprint Device | Japan Laser Corporation | EUN-4200 | Can be replaced with a electron beam lithography device or a focused ion beam milling device |
Nanoimprint Mold | SCIVAX Corporation | 3.0μm pitch | Customized |
Nanoimprint Resist | Toyo Gosei Co., Ltd | PAK01 | |
Polishing Solution | Marumoto Struers K.K. | DP-Spray P 15μm, 1μm, 0.25μm | Use from coarse to fine |
Pipet | AS ONE Corporation | 10mL | |
Sand Paper | Marumoto Struers K.K. | SiC Foil #320, #800 | Use from coarse to fine |
Spin Coater | MIKASA Corporation | MS-A100 |