This work presents a method to quickly and precisely quantify the abdominal pigmentation of Drosophila melanogaster using digital image analysis. This method streamlines the procedures between phenotype acquisition and data analysis and includes specimen mounting, image acquisition, pixel value extraction, and trait measurement.
Pigmentation is a morphologically simple but highly variable trait that often has adaptive significance. It has served extensively as a model for understanding the development and evolution of morphological phenotypes. Abdominal pigmentation in Drosophila melanogaster has been particularly useful, allowing researchers to identify the loci that underlie inter- and intraspecific variations in morphology. Hitherto, however, D. melanogaster abdominal pigmentation has been largely assayed qualitatively, through scoring, rather than quantitatively, which limits the forms of statistical analysis that can be applied to pigmentation data. This work describes a new methodology that allows for the quantification of various aspects of the abdominal pigmentation pattern of adult D. melanogaster. The protocol includes specimen mounting, image capture, data extraction, and analysis. All the software used for image capture and analysis feature macros written for open-source image analysis. The advantage of this approach is the ability to precisely measure pigmentation traits using a methodology that is highly reproducible across different imaging systems. While the technique has been used to measure variation in the tergal pigmentation patterns of adult D. melanogaster, the methodology is flexible and broadly applicable to pigmentation patterns in myriad different organisms.
Pigmentation shows enormous phenotypic variation between species, populations, and individuals, and even within individuals during ontogeny1,2,3,4,5,6. Although there are myriad studies of pigmentation in a wide variety of animals, pigmentation has perhaps been best studied in Drosophila melanogaster, where the full power of molecular genetics has been used to elucidate the developmental and physiological mechanisms that regulate pigmentation and how these mechanisms evolve1,6. Much is known about the genes that regulate the biochemical synthesis of pigments in D. melanogaster7,8 and the genes that control the temporal and spatial distribution of this biosynthesis9,10,11,12,13. Furthermore, genetic mapping has identified the genetic loci underlying intra- and interspecific differences in pigmentation in D. melanogaster14,15,16,17. The relationships between pigmentation and pleiotropic traits, such as behavior18,19 and immunity19,20, have also been explored, as has the adaptive significance of pigmentation patterns15,21,22. As such, pigmentation in D. melanogaster has emerged as a powerful yet simple model for the development and evolution of complex phenotypes.
Pigmentation in adult D. melanogaster is characterized by distinct patterns of melanization across the body, particularly on the wings and dorsal thorax and abdomen. It is the pigmentation of each cuticular plate (tergite) on the dorsal abdomen, however, that has received the most research attention. There is considerable variation in this pigmentation (Figure 1A-F), because of both genetic17,23 and environmental24,25 factors. The cuticle of an abdominal tergite is made up of anterior and posterior developmental compartments (Figure 1G), each of which can be further subdivided depending based on pigmentation and ornamentation26. The anterior compartment includes six cuticle types (a1-a6), and the posterior compartment includes three (p1-p3) (Figure 1G). Of these, the p1, p2, and a1 cuticle are typically folded under the tergite in un-stretched abdomens so that they are hidden. The reliably visible cuticle is characterized by a band of heavy pigmentation, here referred to as a "pigment band," comprised of cuticle types a4 (hairy with moderate bristles) and a5 (hairy with large bristles), with the posterior edge of the band more intensely pigmented than the anterior edge (Figure 1G). Anterior to this band is a region of lightly pigmented hairy cuticle, which has bristles posteriorly (a3) but not anteriorly (a2). Variation in pigmentation between flies is observed in both the intensity of pigmentation and in the width of the pigment band. In general, variation is greatest in the most posterior segments (abdominal segments 5, 6, and 7) and is lower in the more anterior segments (abdominal segments 3 and 4)24. Furthermore, there is a sexual dimorphism in D. melanogaster pigmentation, with males generally having wholly pigmented fifth and sixth abdominal tergites (Figure 4C).
In most studies of abdominal pigmentation in D. melanogaster, pigmentation has been treated as a categorical or ordinal trait, with the pattern measured qualitatively27,28,29 or semi-quantitatively on a scale14,15,16,17,24,30,31,32,33,34,35,36,37. These methods inevitably suffer from a lack of precision, and because they rely on the subjective assessment of pigmentation, it is difficult to compare the data across studies. Several authors have quantified the spatial dimensions of pigmentation38,39, the intensity of pigmentation of a particular cuticle type23,25,39,40, or the average intensity of pigmentation across the abdominal tergite as a whole41,42,43. Nevertheless, these quantification methods do not measure both the intensity and the spatial distribution of abdominal pigmentation simultaneously and therefore do not capture the nuances of how pigmentation varies across the abdominal tergite. Furthermore, several of these quantification methods38,41,42,43 require the dissection and mounting of the abdominal cuticle. This is both time consuming and destroys the sample, making it unavailable for additional morphological analyses. As the understanding of the development and evolution of abdominal pigmentation deepens, more sophisticated tools to quickly and precisely measure both the spatial distribution and the intensity of pigmentation will be required.
The overall goal of this method is to utilize digital image analysis to obtain a replicable and more precise measure of the abdominal pigmentation in D. melanogaster. The methodology includes three stages. First, the adult fly is non-destructively mounted, and a digital image of the dorsal abdomen is taken. Second, using an ImageJ macro, the user defines an anterior-posterior strip of pixels that extends from the anterior of the a2 cuticle to the posterior of the a5 cuticle (green box, Figure 1G) on both the third and fourth abdominal segments. The average pixel value across the width of this strip is then extracted along its long axis, generating a profile that captures the spatial distribution and intensity of pigmentation as it changes from the anterior to the posterior of the tergite. Third, an R script is used to describe the pigmentation profile mathematically using a cubic spline. The R script then uses the spline and its first and second derivative to extract the width of the a2-a5 cuticle, the width of the pigment band, and the maximum and minimum levels of pigmentation. The method therefore quantifies both the spatial characteristics and the depth of abdominal pigmentation.
This methodology quantifies the pigmentation of the third and fourth abdominal tergites, which have been the focus of numerous previous studies1,15,23,24,25,28,33,39,42, either exclusively or in combination with more posterior tergites. Although less variable than the fifth and sixth abdominal tergites, the third and fourth tergites are not completely pigmented in males, so this protocol can be applied to both males and females. Nevertheless, as shown here, the protocol can be used to measure pigmentation in the fifth and sixth abdominal tergites in females. Furthermore, minor modifications of the scripts used to extract the characteristics of the pigmentation profile should allow for the method to be used to quantify the variation in pigmentation in a wide variety of other organisms.
1. Specimen Mounting
NOTE: Store dead flies in 70% ethanol in water prior to imaging.
2. Microscope Setup
NOTE: Images are acquired using a dissecting scope, transmitted light base, digital camera, and gooseneck cold light source attached to a computer running image acquisition control software. Software instructions are specific to Micro-Manager v1.4.2044, which is an open-source software that incorporates ImageJ45.
3. Specimen Imaging
4. Imaging Across Multiple Sessions
5. Image Analysis
NOTE: Image analysis is conducted in ImageJ45 and uses the "Measurement of Pigmentation.ijm," macro provided as a supplementary file.
6. Data Preprocessing, Analysis, and Session Correction
NOTE: All data analysis is conducted in R47 and uses the "Analysis of Pigmentation.R" script provided. Below, "L…" indicates which line(s) of the script to run for each part of the analysis. See the Supplementary Information for additional details on how the analysis is conducted.
The protocol was used to explore the effect of rearing temperature on abdominal pigmentation. Previous studies have shown that an increase in developmental temperature results in a decrease in the spread of abdominal pigmentation in several species of Drosophila, including D. melanogaster30,32. Specifically, in abdominal tergites 3 and 4, the extent of pigmentation (width of the pigment band) decreases from 17 °C to 25 °C and remains the same from 25 °C to 28 °C24,36. These studies scored the extent of pigmentation on a 1-10 scale (0: no pigment band, tergite completely yellow; 5: pigment band occupies 50% of the tergite; 10: tergite completely dark). To establish whether the quantitative methodology could capture this phenotypic plasticity, the pigmentation was measured in the third and fourth abdominal tergites of an isogenic line of ostensibly wildtype female flies, reared from egg to adult at 17 °C (seven flies), 25 °C (nine flies), and 28 °C (nine flies). To determine the effectiveness of the correction procedure at removing nuisance factors introduced by session effects, the pigmentation of the same flies was re-imaged and re-measured one, two, four, and eight days later. Lighting conditions and exposure between sessions were, however, purposely changed to ensure that there were session effects for the correction procedure to remove. The images have been posted on the Dryad digital repository.
The first question posed was whether there were systematic differences in pigmentation measures across sessions. This was examined using the lme4 package in R48 to fit the mixed models Mijk = Si + Aj+ εijk and Mij = Aj+ εij to both Pmax and Pmin, where M is the pigment measure, S is the session (random effect), A is the abdominal tergite being measured (random effect), and ε is the residual error (subscripts are levels within variables). A log-likelihood ratio test was used to test whether the inclusion of session as a random factor significantly improved the fit; it did (Table 1). As expected, the examination of the variance components (generated through REML48) indicated that variation due to session effects accounted for 67% and 70% of the total variance in Pmax and Pmin, respectively (Table 1).
Fifteen randomly selected control tergites (either third or fourth, from flies reared at 17 °C, 25 °C, or 28 °C) were selected, and changes in their mean Pmax and Pmin were used to correct the pigmentation measures of the remaining tergites across sessions. Repeating the analysis on the corrected pigmentation measures eliminated the session effects (Table 1) and reduced the percentage of total variance due to session effects to zero. The residual error is an estimate, a measurement error after the session effects have been removed, and was 22% and 27% for Pmaxand Pmin, respectively (Table 1)
Next, the corrected data was used to determine whether the effect of temperature on different aspects of pigmentation and size could be detected. The mixed model Mijkm= Ti* Dj+ Xk+ εijkm was fitted to the data, where T is the temperature, D is the tergite (third or fourth), and X is the individual fly (random factor). Because the relationship between pigmentation and temperature is not linear24,36, T was treated as a categorical factor. The maximum and minimum levels of pigmentation (Pmax and Pmin) and the width of the pigment band and of the tergite (Wband and Wtergite) were tested. The effect of temperature on the relative width of the pigment band (Rband =Wband/Wtergite) was also tested. The data showed that the absolute(Wband) and relative (Rband) width of the pigment band decreased from 17 °C to 25 °C (Tukey post-hoc test, P <0.05 for all) and did not significantly change from 25 °C to 28 °C (Tukey post-hoc test, P >0.05 for all) (Table 2, Figure 3A and 3B), which is consistent with previous studies24,36. The same pattern was observed for the maximum and minimum level of pigmentation, Pmax and Pmin (Table 2, Figure 3C). The effect of temperature on the level of pigmentation has not been described before, but it initially appears consistent with other studies that show that the minimum level of pigmentation in the fourth abdominal tergite is positively correlated with the width of the pigment band in wildtype populations39. However, whilst the data from this study indicate a positive relationship between Pmax and Wband, they show a negative relationship between Pmin and Wband (Table 3). This difference between the current and previous studies may reflect differences in how genetic and environmental factors impact the correlation between the level and extent of abdominal pigmentation. Nevertheless, these representative results show that the protocol is capable of not only identifying patterns of pigmentation previously established through qualitative methodologies, but also of revealing new ones that qualitative methodologies are not able to detect.
The effect of temperature on the width of the tergite was more complex. In D. melanogaster, body and organ size decline non-linearly with temperature49. Previous studies suggest that the width of the fifth abdominal tergite decreases by 10% from 16.5 °C to 25 °C, and a further 4% from 25 °C to 29 °C50. While there was a non-significant decrease in the width of the fourth abdominal tergite from 17 °C to 25 °C, both the third and fourth abdominal tergites increased in width from 25 °C to 28 °C (Table 2, Figure 3D). Since the width of the abdominal tergites is essentially defined by the user (steps 5.9-5.10 in the protocol), the disparity between the current and previous studies is unlikely to be due to the way the R script extracts Wtergite from the pigmentation profile. Rather, it may reflect differences in the manner in which the abdominal segment is measured, in the genotypes of the flies, and in the precise aspects of the abdominal tergites being measured.
The next question posed was whether the methodology could generate data comparable to data collected using existing assessments of pigmentation. These methods typically ask the observer to subjectively assign each fly to one of a finite number of phenotypic classes based on the extent of pigmentation15,30,32,33,34 and therefore rely on the observer's ability to assess the width of the pigment band. To test how well this objective method compares to subjective methods, five observers were asked to rank 45 images of female abdomens based on the width of the pigment band of the fourth abdominal tergite. The average ranking across observers was compared with the ranking based on Wband, as measured using this methodology. There was a strong correlation between the subjective and objective rankings (Supplementary Figure 1, in Supplementary Information.pdf), Spearmen's = 0.7342, P <0.0001).
Another question posed was how this method to extract Wband from the pigmentation spline compared to measuring the width of the pigment band by hand (visual method) using the linear measurement tool in ImageJ. Again, a strong correlation was found between data collected using the two methodologies (Supplementary Figure 2, in Supplementary Information.pdf, OLS, r2 = 0.49, P <0.0001). Although the computational method consistently measured the pigment band as being narrower than in the "visual" method, the regression coefficient was not significantly different than 1 (P >0.05).
The final question posed was whether this methodology could be used to measure abdominal pigmentation in other contexts. The methodology could extract the Pmax, Pmin, Wband, and Wtergite for the fifth and sixth abdominal tergites in females and the third and fourth abdominal tergites in males (Figure 4). Furthermore, the methodology could be used to quantify the increase in Pmaxand Pmin in flies mutant for ebony (e1), which show an increase in cuticular pigmentation across the body and a specific increase in pigmentation of the cuticle anterior to the pigment band28 (Figure 4).
Figure 1: Abdominal pigmentation in D. melanogaster. (A–F) Variation in abdominal pigmentation in females of two genotypes reared at three temperatures (17 °C, 25 °C, and 28 °C). A3 and A4 are the third and fourth abdominal tergites, respectively. (G) The dorsal abdominal tergite includes an anterior and posterior compartment, only parts of which are reliably visible in un-stretched abdomens. The compartments are further subdivided into distinct cuticle types: a1: un-pigmented, no hairs; a2: lightly pigmented and hairs; a3: lightly pigmented, hairs, and moderate bristle; a4: darkly pigmented, hairs, and moderate bristle; a5: darkly pigmented, hairs, and large bristle; a6: un-pigmented and hairs; p3: un-pigmented and hairs; p2: un-pigmented and no hairs; and p1: un-pigmented and tessellated. The pigment band is made up of cuticles a4 and a5. Only pigmented cuticles (a2-a5, green box) are used in the analysis. Scale bars = 200 µm in (A-F). The contrast of all images has been adjusted to highlight the pigmentation pattern, and the images are illustrative. Unadjusted images used to generate the representative results are deposited on the Dryad digital repository. Please click here to view a larger version of this figure.
Figure 2: Image and data analysis for quantifying abdominal pigmentation. (A–F) and (A–F) are for different specimens and show how the analysis deals with images of different quality. (A) The user first defines the midline of the abdomen (yellow line), the anterior edge of the tergite (cyan line), and a line slightly posterior to the posterior edge of the pigment band (magenta line). The ImageJ macro then draws a line from the midpoint of the anterior and posterior lines (white dashed line), which it widens to form an ROI (black box), magnified in (B). (C) The ImageJ macro then extracts the average pixel value along the anterior-posterior axis of the ROI. Note that at this stage, the profile is read from posterior to anterior. (D–E) The R macro converts the average pixel values to a pigmentation value, reverses the direction of the pigmentation profile, fits it with a cubic spline (S(x)) (D), and calculates the first (S(x)) (E) and second (S(x)) derivative of the spline (F). The script then identifies: T3, the position of maximum pigmentation, where S(x) transitions from <0 to >0, moving anteriorly from the posterior of the spline; T2, the position where the decline in pigmentation is the greatest and S(x) is maximum; and T1, the position where the tergite pigmentation is at its minimum and S(x) transitions from >0 to <0, moving anteriorly from T2,. The anterior of the reliably visible tergite (anterior of cuticle a2) is defined by the user. (A-F) In cases where the first derivative cannot be used to find T1, typically because S(x) does not cross 0 anteriorly to the pigment band, the script will define T1 as the position where S(x) transitions from >0 to <0 when moving anteriorly from T2. Please click here to view a larger version of this figure.
Figure 3: The effect of temperature on different aspects of abdominal pigmentation in female D. melanogaster. (A) Width of the pigment band (Wband, Figure 1). (B) Pigment band as a proportion of tergite (Rband). (C) Maximum (Pmax, upper lines) and minimum (Pmin, lower lines) pigmentation. (D) Width of tergite (Wtergite). The points are least square means from linear mixed-effect models (Table 2). The error bars represent the standard error and may be obscured by the markers. The black line is third abdominal tergite. The gray line is the fourth abdominal tergite. Please click here to view a larger version of this figure.
Figure 4: Differences in pigmentation between the third and fourth abdominal tergites. This is shown in (A) ebony1 females, (B) wildtype females, (C) wildtype males, and the fifth and sixth abdominal tergites in wildtype females. (D) Maximum pigmentation, Pmax. (E) Minimum pigmentation, Pmin. (F) Width of the pigment band, Wband. (G) Relative width of the pigment band, Rband. Bars with different letters are significantly different (Tukey HSD post-hoc test, P <0.05). N = 6 for all except ebony1, where N = 4. Scale bars = 200 µm in (A–C). The error bars represent the standard error. The contrast of all images has been adjusted to highlight the pigmentation pattern, and the images are illustrative. Please click here to view a larger version of this figure.
Model Comparison | Variance Components (% of total) | ||||||
Pigmentation Trait | Model | df | Log-likelihood | X² | (%) | (%) | (%) |
Pmax Uncorrected | Mij = Ai + εij | 3 | -678.28 | 1.94 (14%) | 11.86 (86%) | ||
Mijk = Si + Aj + εijk | 4 | -457.95 | 440.66*** | 4.08 (26%) | 10.71 (67%) | 1.14 (7%) | |
Pmin Uncorrected | Mij = Ai + εij | 3 | -875.03 | 6.05 (9%) | 59.39 (91%) | ||
Mijk = Si + Aj + εijk | 4 | -664.58 | 420.91*** | 16.67 (22%) | 53.08 (70%) | 6.31 (8%) | |
Pmax Corrected | Mij = Ai + εij | 3 | -445.05 | 4.08 (78%) | 1.15 (22%) | ||
Mijk = Si + Aj + εijk | 4 | -444.88 | 0.3378 | 4.08 (78%) | 0.01 (<1%) | 1.14 (22%) | |
Pmin Corrected | Mij = Ai + εij | 3 | -649.9 | 16.67 (73%) | 6.24 (27%) | ||
Mijk = Si + Aj + εijk | 4 | -649.9 | 0 | 16.67 (73%) | 0 | 6.31 (27%) |
Table 1: Linear mixed-effect models of the effect of tergite and session. Linear mixed-effect models of the effect of tergite and session on abdominal pigmentation (Pmax and Pmin) of 50 tergites re-measured across five sessions, with variance components estimated through REML. Models were linear mixed-effect models. M: Pigmentation measure; A: Individual tergite measured; S: Session; ε: Residual error. Significant X² are shown in bold. * p <0.05. ** p <0.01. *** p <0.001.
Trait | Temperature | Tergite | Temperature x Tergite |
|
Pmax | F-ratio | 8.14 | 55.59 | 6.6 |
P | 0.002 | <0.001 | 0.002 | |
Pmin | F-ratio | 4.41 | 66.11 | 6.36 |
P | 0.026 | <0.001 | 0.002 | |
Wband | F-ratio | 113.93 | 0.01 | 0.64 |
P | <0.001 | 0.931 | 0.531 | |
Wtergite | F-ratio | 1.79 | 0.92 | 5.11 |
P | 0.191 | 0.338 | 0.007 | |
Rband | F-ratio | 27.66 | 0.08 | 1.46 |
P | <0.001 | 0.782 | 0.23 |
Table 2: Effect of temperature and tergite identity. The effect of temperature and tergite identity on different aspects of abdominal pigmentation in 50 tergites re-measured across five sessions. Models were linear mixed-effect models, with individual fly included as a random factor. Pmax: Maximum pigmentation (corrected); Pmin: Minimum pigmentation (corrected); Wband: Width of pigment band; Wtergite: Width of tergite; Rband: Relative width of pigment band. Significant fixed factors are shown in bold (P <0.05).
Intercept | Wband | Temperature | Tergite | |||
17˚C | 25˚C | Third | ||||
Pmax | β | 234.35 | 0.069 | 0.063 | -1.178 | -0.588 |
F | 29.93 | 5.97 | 54.82 | |||
P | <0.001 | 0.008 | <0.001 | |||
Pmin | β | 223.96 | -0.137 | 3.931 | -3.024 | -1.54 |
F | 19.33 | 9.66 | 62.02 | |||
P | <0.001 | 0.001 | <0.001 |
Table 3: Effect of pigment band width, temperature, and tergite identity on the level of pigmentation. Effect of pigment band width, temperature, and tergite identity on the level of pigmentation in 50 tergites re-measured across five sessions. Models were linear mixed-effect models, with individual fly included as a random factor. Pmax: Maximum pigmentation (corrected); Pmin: Minimum pigmentation (corrected); Wband: Width of pigment band; Rband: Relative width of pigment band.
Supplemental File 1. Supplementaly Information. Please click here to download this file.
Supplemental File 2. Analysis of Pigmentation.R script. Please click here to download this file.
Supplemental File 3. Measurement of Pigmentation.ijm Please click here to download this file.
Simulation R Script. Please click here to download this file.
This methodology allows for the precise, rapid, and repeatable acquisition of pigmentation data in a quantitative form suitable for multiple downstream analyses. The method has been used to acquire data on the effect of temperature on abdominal pigmentation in an isogenic line of flies. However, the methodology could be used in forward-genetics studies to identify genes that underlie pigmentation differences between individuals, populations, or species, or reverse-genetic studies to explore the effects of specific genes on pigmentation patterns. Although, as discussed above, there have been myriad studies that have explored the development and evolution of D. melanogaster pigmentation, the precision with which this methodology captures pigmentation data in a quantitative form allows for more powerful statistical approaches. This in turn allows researchers to use fewer samples when analyzing pigmentation patterns, or allows them to elucidate more subtle aspects of pigmentation. Furthermore, this method does not require the dissection of the fly, allowing the sample to be subsequently used for additional analyses, such as morphological measurements or genotyping. Indeed, the methodology could potentially be used on anesthetized flies, which could then be selectively bred based on their pigmentation characteristics.
One potential issue with measuring pigmentation through image analysis is that the pigmentation values may reflect the exposure and lighting conditions under which an image was taken, rather than the level of pigmentation itself. While using fixed lighting levels, light positions, magnification, and exposure helps to alleviate these issues, it is likely that it will still be necessary to take several repeat control images in each session to fully control for session effects. This method includes re-imaging fifteen control specimens each session and using the between-session changes in Pmax and Pmin to detect and eliminate session effects. However, the precise number of control specimens that should be re-imaged will depend on the imaging hardware and software being used, the aspect of pigmentation of interest to the user and how variable it is between treatments, and how many images are taken in each session. Conducting a preliminary experiment in which the same specimens are re-imaged over five sessions will allow the user to calculate the variance due to session effects, the variance due to specimen identity, and the residual variance (which is an estimate of measurement error after correcting for session effects) (Table 1). These values can then be used to estimate how many control images need to be taken in each session to detect and control for session effects. A simple R script has been written and uses data from such a preliminary experiment to simulate pigmentation measures across sessions. It can be used to check that the number of control images per session are sufficient to remove the session effects. This script is provided as a supplementary file.
If users are concerned that there are nuisance factors within sessions, they can also reimage the same specimen multiple times throughout the session, as described in John et al., 201641. In this case, [sampleID] for the single control specimen must be changed each time it is re-imaged within a session (e.g., control1, control2, control3, etc.); otherwise, the imaging software will replace the previous image with the new image of the same name. The correction function bases its correction on duplicate images with the same [sampleID] between temporally adjacent sessions and will correct, whether the same specimen is re-imaged multiple times within and between sessions or whether the same set of control specimens are imaged between sessions. Regardless of how the control images are taken, sessions should be treated as blocks, and where possible, users should employ a randomized block design so that any session effects that remain after correction can be statistically controlled for. Failing this, specimens should be randomly assigned to sessions so that session effects are not confounded with experimental factors.
The protocol relies on the generation of a pigmentation profile that represents the change in pigmentation across each tergite. One issue with generating this profile is the dark hairs that cover the abdominal cuticle, which are invariably bisected by any anterior-posterior line that crosses the tergite. The protocol reduces the noise generated by these hairs by taking the pigmentation profile averaged across a band of cuticle. Nevertheless, users may set the width of the ROI to 1 pixel in step 5.6 if they wish to generate profiles that are based on a thin line of cuticle. Furthermore, users may analyze the same image multiple times, changing the lateral position of the pigmentation profile to capture changes in the width of the pigment band within a segment. In this case, however, users would need to copy the same image multiple times and give each copy a unique name before conducting step 5.1, since the ImageJ macro will overwrite profiles of the same name.
A second important consideration when generating the pigmentation profile is the smoothing parameter of the cubic spline, defined within the spline.der.er function (L63) in the Analysis of Pigmentation R script. The appropriate smoothing parameter depends on the imaging setup and resolution. Over-smoothing a profile can result in a loss of the characteristics of the spline profile used to calculate the coordinates of T1, T2, and T3 (Figure 2D and 2D'). Conversely, under-smoothing increases the noise of the profile and consequently the accuracy of the coordinate extractions. The chek function produces a graphical summary of the spline and its derivatives and can be used as a visual cue to choose an appropriate smoothing parameter.
The methodology described here focuses on capturing data on the pigmentation of the third and fourth abdominal tergites in female and male D. melanogaster. However, the representative results indicate that it can also be used to measure the pigmentation of the fifth and sixth abdominal segments of females. Furthermore, the methodology can detect differences in phenotype caused by mutants of genes that affect pigmentation. The ImageJ macro and R scripts can easily be modified to measure pigmentation in the abdomens of different D. melanogaster species, or even pigmentation of other body parts in other taxa, provided that the pigmentation pattern is stereotypical. Finally, the methodology could also be adapted to measure aspects of pigmentation color by capturing images in RGB and analyzing each channel separately.
In general, this methodology is part of the emerging field of phenomics51,52. The goal of phenomics is to generate and analyze large multi-dimensional phenotypic datasets to better understand the genetic and environmental interactions that influence phenotype, including disease, and how these interactions evolve to generate biological diversity. For phenomics to fulfill its potential, however, methodologies for acquiring phenotypic data must be straightforward and easily adapted to different phenotypes, as well as freely available. By using open-source software to analyze images captured using standard equipment, this methodology helps to achieve this goal.
The authors have nothing to disclose.
This work was funded by National Science Foundation grants IOS-1256565 and IOS-1557638 to AWS. We thank Patricia Wittkopp and three anonymous reviewers for their helpful comments on an earlier version of this paper.
Dumont #5 Biology Forceps | FST | 11252-30 | |
Agar | Sigma-Aldrich | 5040 | |
Dissecting Scope | Leica | MZ16FA | |
Base | Leica | MDG41 | |
Camera | Leica | DFC280 | |
Gooseneck Cold Light Source | Schott | ACE 1 | |
Image Acquisition Control Software | Micro-Manager v1.3.20 | https://micro-manager.org/ | |
Image Analysis Software | ImageJ | https://imagej.nih.gov/ij/ | |
Data Analysis Software | R 3.3.2 | https://www.r-project.org/ | |
LED | Thor Labs | LEDWE-15 | |
Multimeter | Fluke | Fluke 75 Series II | |
60 x 15 mm Petri dish | Celltreat Scientific Products | 229663 | |
Stage micrometer | Klarman Rulings, Inc. | KR-867 |