ここで、高分解能1 H及び13 C核磁気共鳴(NMR)分光法は、カプセル化された魚油サプリメントの定量的および定性的分析のための迅速かつ信頼性の高いツールとして使用しました。
西洋の食事は、したがって、魚油サプリメントの消費はこれらの必須栄養素の摂取量を増やすことが推奨され、nは -3脂肪酸に乏しいです。この研究の目的は、二つの異なるNMR器具を利用した高分解能1 H及び13 C NMR分光法を用いてカプセル化された魚油サプリメントの定性・定量分析を実証することです。 500 MHzおよび850 MHz装置。両方のプロトン(1 H)および炭素(13 C)NMRスペクトルは、魚油サプリメントの主要な構成成分の定量的決意のために使用することができます。魚油サプリメント中の脂質の定量は、当該1Dスペクトルに適切なNMRシグナルの積分によって達成されます。 1 H及び13 C NMRにより得られた結果は、2つの核と2つの機器間の分解能と感度の差にもかかわらず、互いによく一致しています。 1 H NMRプランスペクトルは1時間に10分から続く13の C NMR分析とは対照的に、1分未満に記録することができるようにSAより迅速な分析は、13 C NMRに比べ。 13 C NMRスペクトルは、しかし、はるかに有益です。個々の脂肪酸のより大きな数の定量的データを提供することができ、グリセロール骨格上の脂肪酸の位置分布を決定するために使用することができます。両方の核を精製または分離工程を必要とせずにただ1つの実験において定量的情報を提供することができます。磁界の強度はほとんどが13 C NMRに対するその低い解像度に1 H NMRスペクトルに影響を与える、しかし、低コストのNMR機器を効率的に食品業界および品質管理研究所による標準的な方法として適用することができます。
食餌中のn-3脂肪酸の摂取は、心疾患1、2、3、4、炎症性疾患および糖尿病5のように、いくつかの状態に対して有益であることが証明されています。西洋食は、n -3脂肪酸の貧しい考えられているので、魚油サプリメントの消費量は、nを改善することが推奨され-6 / N -3消費者の栄養1のバランス。魚油サプリメントの消費量の最近の増加にもかかわらず、質問は、これらの製品のいくつかの安全性、信頼性、および品質について残ります。魚油サプリメントの迅速かつ正確な組成分析は、適切にこれらの商用製品の品質を評価し、消費者の安全を確保するために不可欠です。
魚油サプリメントを評価するための最も一般的な方法論Sは、ガスクロマトグラフィー(GC)及び赤外分光法(IR)です。これらは非常に敏感な方法ですが、彼らはいくつかの欠点がある6。 GC分析は、個々の化合物の分離および誘導体が7必要であり、脂質酸化を分析8,9の間に発生する可能性があるため、時間がかかり(4~8時間)です。 IR分光法を定量することができるがIRバンドは、単一化合物10に起因することが可能な例外はあるが、予測モデルは、部分最小二乗回帰(PLSR)を使用して構築する必要があります。 PLSR解析11の時間を増大させる多数のサンプルの分析を必要とします。このため、魚油多数のサンプルの正確かつ迅速な分析を可能にする新しい分析手法の開発に関心が高まっています。このようオフィとしての組織国立衛生研究所(NIH)と食品医薬品局(FDA)でのサプリメントのCE(ODS)は、これらの新しいメソッド12、13を開発するための公式分析化学者協会(AOAC)と協力してきました。
スクリーニングおよびそのような栄養補助食品などの多成分マトリックスを評価するための最も有望な分析方法の一つは、核磁気共鳴(NMR)分光法14、15です。 NMR分光法は、いくつかの利点を有する:それは非破壊的かつ定量的な技術は、それはサンプル調製に最小限必要であり、優れた精度と再現性を特徴とします。それは、溶媒を少量しか使用しているためまた、NMR分光法は、環境に配慮した方法論です。 NMR分光法の主な欠点は、他のanalytiと比較して相対的に低い感度でありますCALの方法は、しかし、そのような強い磁場、種々の直径の極低温プローブ、高度なデータ処理、及び多目的パルスシーケンス及び技術として計測における最近の技術進歩は、nM範囲まで感度が増加しています。 NMR計測は、高コストではあるが、NMR分光計の長寿命およびNMRの多くのアプリケーションは、長期的には、分析のコストを下げます。この詳細なビデオプロトコルは、フィールドに新しい実践者が1 Hおよび魚油サプリメントの13の C NMR分光分析に関連した問題を回避するためのものです。
トラブルシューティングのための変更と戦略
スペクトル品質 。 NMR信号の線幅及びNMRスペクトルの分解能は、従って、磁場の均一性を最適化するためのプロセスである、シミングに大きく依存します。ルーチン分析のために、1Dシミングが適切であると3Dシミングは、それが定期的にNMR員によって行われることを考えると、必要とされません。そうでない場合、…
The authors have nothing to disclose.
この作品は、オハイオ州立大学の健康ディスカバリーテーマのための食品とオハイオ州立大学食品科学省によってサポートされていました。著者は、ペンシルベニア州立大学でオハイオ州立大学のNMR施設とNMR施設に感謝したいと思います。
Avance III 850 NMR instrument | Bruker | ||
Avance III 500 NMR instrument | Bruker | ||
TCI 5mm probe | Bruker | Helium cooled inverse (proton deetected) NMR probe featuring three independent channels (1H, 13C, 15N) | |
BBO prodigy 5mm probe | Bruker | Nitrogen cooled observe (X-nuclei detected) probe, featuring two channels; one for 1H and 19F detectionand one for X-nuclei (covering from 15N to 31P) | |
Spinner turbin | Bruker | NMR spinners are made by polymer materials and they have a rubber o-ring to hold the NMR tube securely in place | |
Topspin 3.5 | Bruker | ||
deuterated chloroform | Sigma-Aldrich | 865-49-6 | 99.8 atom % D, contains 0.03 TMS |
2,6-Di-tert-butyl-4-methylphenol, | Sigma-Aldrich | 128-37-0 | purity >99% |
Fish oil samples | |||
NMR tubes | New Era | NE-RG5-7 | 5mm OD Routine “R” Series NMR Sample Tube |
BSMS | Bruker | Bruker Systems Management System; control system device |