Ici, à haute résolution du 1 H et 13 C spectroscopie de résonance magnétique nucléaire (RMN) a été utilisé comme outil rapide et fiable pour l' analyse quantitative et qualitative des suppléments d'huile de poisson encapsulées.
Le régime alimentaire occidental est pauvre en n -3 acides gras, donc la consommation de suppléments d'huile de poisson est recommandé d'augmenter l'apport de ces nutriments essentiels. L'objectif de cette étude est de démontrer l'analyse qualitative et quantitative des suppléments d'huile de poisson encapsulées en utilisant une haute résolution H et spectroscopie RMN 13 C en utilisant deux instruments différents de RMN; 500 MHz et un instrument de 850 MHz. Les deux protons (1 H) et du carbone (13 C) Les spectres de RMN peuvent être utilisées pour la détermination quantitative des constituants majeurs des suppléments d'huile de poisson. Quantification des lipides dans les suppléments d'huile de poisson est atteint grâce à l'intégration des signaux de RMN appropriés dans les spectres 1D pertinents. Les résultats obtenus par 1 H et 13 C – RMN sont en accord avec l'autre, malgré la différence de résolution et de sensibilité entre les deux noyaux et les deux instruments. 1 H RMN offreSA analyse plus rapide par rapport à 13 C – RMN, comme le spectre peut être enregistré en moins de 1 min, par opposition à l' analyse 13 C – RMN, qui dure de 10 minutes à une heure. Le 13 spectre de RMN C, cependant, est beaucoup plus informative. Il peut fournir des données quantitatives pour un plus grand nombre d'acides gras individuels et peut être utilisé pour déterminer la distribution de position des acides gras sur le squelette glycerol. Les deux noyaux peuvent fournir des informations quantitatives en une seule expérience sans la nécessité d'étapes de purification ou de séparation. La force du champ magnétique affecte principalement les 1 H spectres RMN en raison de sa résolution inférieure par rapport à 13 C RMN, cependant, même les instruments de RMN à plus faible coût peuvent être efficacement appliquées en tant que méthode standard par les laboratoires de l' industrie alimentaire et de contrôle de la qualité.
La consommation de n -3 acides gras dans le régime alimentaire est avérée être bénéfique contre plusieurs maladies telles que des troubles cardiaques 1, 2, 3, 4 maladies inflammatoires et le diabète 5. Le régime alimentaire occidental est considéré comme pauvre en n -3 acides gras et donc la consommation de suppléments d'huile de poisson est recommandé d'améliorer la n -6 / -3 n équilibre dans la nutrition des consommateurs 1. Malgré la récente augmentation de la consommation de suppléments d'huile de poisson, des questions demeurent sur la sécurité, l'authenticité et la qualité de certains de ces produits. L'analyse de la composition rapide et précise des suppléments d'huile de poisson est essentiel d'évaluer correctement la qualité de ces produits commerciaux et d'assurer la sécurité des consommateurs.
Les méthodes les plus communes pour l'évaluation du supplément d'huile de poissons sont chromatographie en phase gazeuse (GC) et la spectroscopie infrarouge (IR). Bien que ces méthodes sont très sensibles, ils souffrent de plusieurs inconvénients 6. L' analyse GC prend beaucoup de temps (4-8 h) parce que la séparation et la dérivatisation des composés individuels est requis 7 et l' oxydation des lipides peuvent se produire lors de l'analyse 8, 9. Bien que la spectroscopie IR peut être quantitative, un modèle de prédiction doit être construit en utilisant la régression des moindres carrés partiels (PLSR), bien qu'il y ait des exceptions dans lesquelles bandes IR peut être attribué à un seul composé 10. PLSR nécessite l'analyse d'un grand nombre d'échantillons, ce qui augmente le temps de l'analyse 11. Pour cette raison, il y a un intérêt croissant pour le développement de nouvelles méthodes d'analyse qui permettent une analyse précise et rapide d'un grand nombre d'échantillons d'huile de poisson. Des organisations telles que l'OffiCE des compléments alimentaires (ODS) aux National Institutes of Health (NIH) et la Food and Drug Administration (FDA) ont collaboré avec l'Association of Official Analytical Chemists (AOAC) pour développer ces nouvelles méthodes 12, 13.
L' une des méthodes d' analyse les plus prometteurs pour le dépistage et l'évaluation des matrices à plusieurs composants, tels que les suppléments alimentaires, est la spectroscopie par résonance magnétique (RMN) nucléaire 14, 15. spectroscopie RMN présente plusieurs avantages: il est une technique non destructive et quantitative, il faut un minimum d'aucune préparation de l'échantillon, et il se caractérise par une excellente précision et la reproductibilité. En outre, la spectroscopie RMN est une méthode respectueuse de l'environnement car il utilise seulement de petites quantités de solvants. Le principal inconvénient de la spectroscopie de RMN est sa sensibilité relativement faible par rapport à d'autres analytiméthodes cal Cependant, les progrès technologiques récents dans l'instrumentation tels que des champs magnétiques forts, des sondes cryogéniques de différents diamètres, le traitement de données de pointe et polyvalents séquences d'impulsions et de techniques ont augmenté la sensibilité jusqu'à la plage des nM. Bien que l'instrumentation RMN est le coût élevé, la longue durée de spectromètres RMN et les nombreuses applications de RMN réduisent le coût de l'analyse à long terme. Ce protocole vidéo détaillé est destiné à aider les nouveaux praticiens dans le domaine éviter les pièges associés à 1 H et 13 C RMN analyse spectroscopique des suppléments d'huile de poisson.
Modifications et stratégies de dépannage
Qualité spectrale. La largeur de raie du signal RMN et donc la résolution du spectre RMN est fortement dépendante de calage, qui est un procédé pour l'optimisation de l'homogénéité du champ magnétique. Pour une analyse de routine, 1D est shimming n'est pas nécessaire et suffisante d'une 3D shimming, étant donné qu'il est réalisé par le personnel de RMN sur une base régulière. Si cela est le cas, il f…
The authors have nothing to disclose.
Ce travail a été soutenu par les aliments pour thème Découverte de la santé à l'Ohio State University et le Département des sciences de l'alimentation et de la technologie à l'Ohio State University. Les auteurs tiennent à remercier l'installation de RMN à l'Ohio State University et l'installation de RMN à l'Université Penn State.
Avance III 850 NMR instrument | Bruker | ||
Avance III 500 NMR instrument | Bruker | ||
TCI 5mm probe | Bruker | Helium cooled inverse (proton deetected) NMR probe featuring three independent channels (1H, 13C, 15N) | |
BBO prodigy 5mm probe | Bruker | Nitrogen cooled observe (X-nuclei detected) probe, featuring two channels; one for 1H and 19F detectionand one for X-nuclei (covering from 15N to 31P) | |
Spinner turbin | Bruker | NMR spinners are made by polymer materials and they have a rubber o-ring to hold the NMR tube securely in place | |
Topspin 3.5 | Bruker | ||
deuterated chloroform | Sigma-Aldrich | 865-49-6 | 99.8 atom % D, contains 0.03 TMS |
2,6-Di-tert-butyl-4-methylphenol, | Sigma-Aldrich | 128-37-0 | purity >99% |
Fish oil samples | |||
NMR tubes | New Era | NE-RG5-7 | 5mm OD Routine “R” Series NMR Sample Tube |
BSMS | Bruker | Bruker Systems Management System; control system device |