Лазеры часто используются в исследованиях клеточного ответа на повреждение ДНК. Тем не менее, они генерируют повреждения которых расстояние, частоту и столкновения с вилками репликации редко характеризуются. Здесь мы описываем подход, который позволяет определить эти параметры с лазерными локализованы interstrand сшивок.
Повреждение ДНК реагирование (РДР) было широко охарактеризовано в исследованиях двойных разрывов ДНК (DSBs), индуцированных лазерный микро облучением пучка в живых клетках. DDR, чтобы спираль искажая ковалентные модификации ДНК, в том числе interstrand сшивок ДНК (МКСТ), не так хорошо определены. Мы изучали DDR стимулируются ICL, локализованных с помощью лазерной фотоактивации immunotagged псораленов, в ядрах живых клеток. Для решения фундаментальных вопросов о распределении аддукта и вилка репликации столкновениях, мы совместили локализацию лазера с двумя другими технологиями. ДНК-волокна часто используются для отображения хода вилки репликации с помощью иммунофлуоресценции аналогов нуклеозидов, включенных в течение коротких импульсов. Immunoquantum точка была широко использована для одного изображения молекулы. В новом подходе, ДНК-волокна из клеток, несущих лазерные локализованы ICLS распространяются на предметные стекла микроскопа. В помеченном МКСТЕ отображается immunoquantum точек и йе между поражением расстояние определяется. Репликация вилочные столкновения с ICL, можно визуализировать и различные модели сталкиваются с идентифицированы и количественно.
ДНК находится под постоянным нападением от экзогенных агентов, таких как облучение ультрафиолетового света,, токсины окружающей среды, продукты сгорания и т.д. Кроме того, он также атакован эндогенными радикальных частицами, полученных путем окислительного метаболизма. Все они имеют потенциал , чтобы химически или физически нарушить целостность ДНК 1. Возмущения в геноме может активировать ДНК Damage Response (DDR), а набор и пост трансляционной модификации каскада с сотнями, если не тысячи, белков и микроРНК, участвующих в репарации повреждений, регуляции клеточного цикла, апоптоза, старении и воспалительных путей 2.
Большая часть нашей информации о DDR в исследованиях с DSBs. Это в значительной степени из – за наличие технологий для внедрения брейков, включая последовательность конкретных разрывы, в геномной ДНК в живых клетках 3. Кроме того, propensitу обрывов, чтобы вызвать фокусы DDR белков, которые могут быть отображены с помощью иммунофлуоресценции, было очень полезно для определения кинетики и требований реагирующих белков. Одной из ключевых технологий для изучения DDR был представлен Боннэр и коллегами, которые использовали лазерный луч направить полосу DSBs в «области интереса» (ROI) в ядрах живых клеток 4. В сущности, они создали длинный фокус, в котором белки DDR могут быть определены с помощью иммунофлюоресценции. Это было проиллюстрировано их демонстрацией сильной полосы фосфорилированного гистона H2AX (γ-H2AX) в лазерном воздействии клеток. С тех пор лазерный подход был использован в многочисленных исследованиях DDR, индуцированных DSBs. Хотя мощный и популярный, и источник драматических образов иммунофлюоресценции, следует отметить, что в большинстве опытов интенсивности лазерного излучения регулируют таким образом, чтобы наблюдаемые результаты, не заботясь о личности поражения,плотность, или промежуток. На самом деле, это может быть трудно сделать эти оценки. Таким образом , они в значительной степени игнорируются, несмотря на множественность поражений , введенных в ДНК с помощью лазеров 5. Это способствует много противоречий в литературе 6.
В отличие от DSBs, большинство химических модификаций ДНК не стимулируют образование дискретных очагов DDR белков. Это очень важно в свете современного понимания частоты поражения. Было подсчитано , что человеческие клетки в культуре несут целых 50 DSBs за клеточный цикл, сформированных в основном во время S фазы 7, 8, 9. Меньшее образуются в не пролиферирующих клеток. Это контрастирует с количеством потерь нуклеотидных или модификации событий, которые в десятки тысяч на клетку / день 1, 10. Таким образом, мы знаем больше всегоДДР индуцируется событиями, которые являются относительно редких, и гораздо меньше о тех, индуцированных спирали искажая поражения, которые в совокупности являются гораздо более распространенным явлением.
Для решения вопросов о клеточном ответе на ковалентные модификации геномной ДНК, мы хотели работать с спиралью искажая ДНК аддукта, который имел присущую DDR индукции активности. Кроме того, для облегчения опытно-конструкторских и интерпретации мы были заинтересованы в структуре которого введение можно контролировать по времени и был поддается визуализации. Соответственно, мы разработали стратегию, основанную на псоралене. Псоралено хорошо охарактеризованы светочувствительные интеркаляторы ДНК, благоприятствующие 5' TA: AT сайтов. В отличии от других сшивающих агентов, таких как азот горчица и митомицин C (MMC) они не являются ДНК-реактивными, если не подвергаются воздействию длинноволнового ультрафиолетового (УФ) света. Интеркалированные молекулы реагируют с основаниями тимина на противоположных нити для производства спирали искажая interstrand сшивок (ICL,) 11. С триметили псорально , используемые в наших экспериментах большинство продуктов ICLS, относительно мало monoadducts генерируется (менее 10%) 12 и intrastrand сшивки между соседними основаниями на одной нити не образуются. Поскольку они являются мощными блоками для репликации и транскрипции, псорально и других сшивающих агентов, как цис-платина и MMC, которые обычно используется в химиотерапии. Таким образом, псорально включено исследование, которые следовали за активацию DDR с помощью спиральной искажающей структуры, а также обеспечили понимание клеточного ответ на соединение с клинической значимостью.
Мы синтезировали реагент, в котором триметил псорален был связан с дигоксигенином (Dig), растительный стерин не найден в клетках млекопитающих и часто используется в качестве immunotag. Требование фотоактивации позволяет локализацию с помощью лазерного света (365 нм) псорален ICL, в определенной ROI в ядрах в живых клетках. Они могут быть отображены IMMunofluorescence против тега Dig. Репарации ДНК и белки DDR появились в полосах лазера локализованных ICLS 13, 14.
DDR активируется с помощью лазера высокой интенсивности , используемой для производства DSBs может быть связан с изолированным или кластерным повреждением 15, 16. Следовательно, актуальность результатов этих экспериментов в природе поражения, присутствующие в значительно меньшей концентрации, является неопределенным. Для решения подобных вопросов о псоралена частоте аддукта и расстоянии в ДНК, мы воспользовались ДНК волоконной технологии 17 и immunoquantum точек. Квантовые точки намного ярче, чем флуоресцентные красители и не отбеливают под воздействием света. Таким образом , они часто используются для визуализации одной молекулы 18, приложение , для которого флуоресцентные красители являются недостаточно яркими. Отдельные волокна ДНК могут быть растянуты на гLass слайды и могут быть отображены с помощью иммунофлуоресценции против аналогов нуклеозидов, включенных во инкубационных перед клеточным урожаем. Мы обрабатывали клетки с Dig-псораленом и разоблачили ROI для лазерной микро-облучения. Волокна были получены из клеток и отдельных Dig-псорален аддуктов могут быть визуализированы с immunoquantum точками. Воздействие на клетки аналогам нуклеозидов в течение относительно короткого времени (20-60 мин) позволяет отображать трактов репликации в непосредственной близости от лазера локализуется МКСТ.
Технология лазерной локализации требует использования адгезивных клеток с ядрами, которые видны при ярком микроскопии. Мы попытались прикрепить неадгезированных клетки, такие как первичные лимфоциты, или свободно присоединенные культивируемые клетки, такие как AD293, к стеклянной пов?…
The authors have nothing to disclose.
Это исследование было поддержано частично исследовательской программы Intramural НИЗ Национального института по проблемам старения (Z01 AG000746-08) и Фонд исследований Фанкони.
Digoxigenin NHS ester | Sigma-Aldrich | 11333054001 | |
Chloro-psoralen | Berry and Associates | PS 5000 | |
diaminoglycol | Sigma-Aldrich | 369519 | 4,7,10-Trioxa-1,13-tridecanediamine |
Chloroform | Acros Organics | 423550040 | |
Methanol | Fisher Scientific | A4524 | |
Ammonium solution | Sigma-Aldrich | 5002 | |
TLC plates | Analtech, Inc. | P02511 | |
Flass glass column 24/40, 100ml | Chemglass Life Sciences | CG-1196-02 | |
Nikon T2000_E2 spinning disk confocal microscope, equipped with automated stage and environmental control chamber and plate holder | Perkin Elmer | With Volocity Software | |
Micropoint Galvo | Andor Technologies | with a Nitrogen pulsed laser | |
dye cell | Andor Technologies | MP-2250-2-365 | |
365 dye | Andor Technologies | MP-27-365-DYE | |
IdU | Sigma-Aldrich | 17125 | |
35mm glass botomm plates 1.5 coverslip, 10mm glass diameter, uncoated | Matek | P35G-1.5-10-C | |
microscope slides | New Comer Supply | Part # 5070 | New Silane Slides |
Mouse anti BrdU antibody (IdU) | BD Biosciences | 347580 | 1 in 40 |
Rat anti BrdU Antibody (CldU) | Abcam | ab6326 | 1 in 200 |
Rabbit anti Dig antibody | ThermoFisher Scientific | 710019 | 1 in 200 |
Q-dot 655 goat anti Rabbit IgG | ThermoFisher Scientific | Q-11421MP | 1 in 5000 |
AF647- goat anti Rat IgG | Jackson Immunoresearch | 112-605-167 | 1 in 100 |
AF488-goat anti mouse IgG | Jackson Immunoresearch | 115-545-166 | 1 in 100 |
Zeiss epifluorescent microscope A200 | Zeiss | with Axiovision software | |
Q-dot 655 filter | Chroma | 39107 |