Physical models of biomolecules can facilitate an understanding of their structure-function for the researcher, aid in communication between researchers, and serve as an educational tool in pedagogical endeavors. Here, we provide detailed guidance for the 3D printing of accurate models of biomolecules using fused filament fabrication desktop 3D printers.
The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.
生体分子の機能および活性の完全な理解は、3次元(3D)構造の決意を必要とします。これは、日常的に、X線結晶学、NMR、または電子顕微鏡を用いて達成されます。 3D構造は、それらが1を表す構造に似ているモデル、または正確な物体の認識を介して理解することができます。研究者は、検証探索、および生体分子の機能に関する結果の仮説を通信するための歴史的、物理的な3Dモデルの構築が必要でした。このようなワトソン・クリックのDNAの二重らせんとポーリングのαヘリックス、などこれらのモデルは、構造と機能の関係にユニークな洞察を提供し、核酸とタンパク質の構造機能2、3、4の私たちの初期の理解に極めて重要でした。複雑なタンパク質や核酸のモデルを作成することができますが、物理モデルを構築する時間とコストは、最終的には、コンピュータ支援分子可視化の相対的な容易さを上回るました。
また、添加剤の製造として知られる3Dプリントの開発は、再び生体分子5の物理モデルの構築を可能にしました。 3Dプリントは、材料(単数または複数)の層の逐次付加を介してデジタルファイルの物理的な、三次元物体を製造する方法です。種々の機構がこのプロセスで使用されています。最近まで、生体分子の物理的モデルを生成するために使用される機械は、広く使用されるにはあまりにも高価でした。しかし、10年で、3Dプリント技術は、溶融フィラメント製造(FFF)は、特に、民生6のため、それがアクセスできるよう、大幅に進歩してきました。 FFFプリンタは今高校、図書館、大学、研究室で一般に入手可能です。大きい手頃な価格と3D印刷技術のアクセシビリティ正確な、物理的な三次元生体分子モデル7、 図8、 図9にデジタル3Dの生体分子モデルを変換することが可能となりました。このようなモデルは、単一の生体分子の簡単な表現だけでなく、例えばリボソームやウイルスキャプシド構造のような複雑な高分子集合体だけでなく、を含みます。熱可塑性押出法を用いて、特に、しかし、個々の生体分子及び高分子集合体を印刷する工程は、いくつかの課題を提起します。具体的には、生体分子の表現は、多くの場合、プリンタが生成するために困難であり、複雑な形状を持っており、正常に印刷されますデジタルモデルを作成し、処理することは、分子モデリング、3Dモデリング、および3Dプリンタソフトウェアとスキルが必要です。
生体分子を印刷するための3Dワークフローは、大きく4つのステップで行われます。(1)3Dプリントのためにその座標ファイルから生体分子モデルを用意します。(2)セグメントに「スライス」ソフトウェアにプリンタのモデルを生体分子のモデルをインポートし、物理的に生体分子モデルを下支えします支持構造を生成します。 (3)適切なフィラメントを選択し、3Dモデルを印刷します。 (4)モデルから支持体を除去するなどのポストプロダクション処理工程( 図1及び2)。計算上、生体分子の座標ファイルを操作し、このプロセスの最初のステップは、非常に重要です。この段階で、ユーザは支柱の形でモデルの援軍を構築するだけでなく、ユーザーが表示することを選択したものに無関係なされている構造体を除去することができます。また、表現の選択は、この段階で行われる:表面表現、リボン、および/または個々の原子として生体分子の全部または一部を表示するかどうか。必要な付加および/またはコンテンツの減算が行われ、表示が選択されると、構造は、3Dカとして保存されデルファイル。次に、ファイルは、生体分子のプラスチックレプリカに、層によって、印刷することができる3Dプリント・ファイルに層をモデルに変換する第2のソフトウェアプログラムで開かれます。
私たちのプロトコルの目標は、FFFのプリンタへのアクセスが、に、より高価ではない3D印刷技術を持つ多数のユーザーへの分子モデルの製造がアクセスできるようにすることです。ここでは、FFFの印刷用に最適化されている方法で、3D分子データから生体分子の3Dプリントのためのガイドを提供します。複雑な生体分子構造の印刷性を最大化し、物理モデルの単純な後処理を確実にするためにどのように我々は、詳細。いくつかの一般的な印刷材料またはフィラメントの特性が比較され、柔軟なプリントを作成するためのそれらの使用に関する推奨事項が提供されます。最後に、我々は、異なる分子表現の使用を示す3Dプリント生体分子モデルの一連の例を紹介しました。
生体分子の物理的な3Dモデルは、視覚化のより一般的なコンピュータベースの方法を強力に補完します。物理的な3D表現の追加プロパティは、生体分子の構造の直感的な理解に貢献しています。生体分子の物理的な3Dモデルの構築は、人間の感覚のよく発達したモードを利用する媒体の使用を介して彼らの研究を容易にすることができます。 3Dモデルは、研究者の助けとしてだけではなく働くが、教育活動を促進するために使用することができ、学習が13、14、15の結果の成果を高めることができます。磁石は、ポリペプチド16のモデルで示すように、組み立ておよび分解を可能にするために、プラスチック製のモデルに追加することができます。また、3次元印刷オブジェクトがmicroflを作るために、ならびに研究室機器17の製造においても、研究に使用することができますセル18および結晶19またはニューロン20のモデルのためuidicデバイス。物理モデルの操作は、新たな洞察を鼓舞することができ共同の議論を促進する働きをすることができます。
プリンタのコストで3Dプリント技術と削減における最近の開発は、個々のユーザによって生体分子の複雑な、物理的な3Dモデルの作成が可能になります。 FFFの印刷技術は、より一般的な他の方法よりも安価であるが、多くの制限をもたらします。 3D印刷プロセスは時間がかかり、かつ機械的な障害が発生しました。 FFFのプリンタは、通常、色情報のみの表示を制限し、一部ごとに1つの材料を印刷することができます。 FFFプリンタで作られたモデルの分解能は、層ごとに100μmの周りに低いです。我々は、これらの制限で動作するようにし、興味のあるプリンタおよび生体分子(複数可)のためのアプローチを開発するリーダーをお勧めします。私たちは、proceを提示しています、正確な情報を提供する、および印刷可能です興味のある生体分子のカスタム3D表現を開発するユーザーのために必要SSES。すべての新しい技術と同様に、その使用中に克服しなければならない "成長の痛み」は、しばしばあります。私たちは、問題が3Dプリントの生体分子(サプリメント6を参照)の過程で発生する可能性のあるいくつかの例を提供します。
最後に、この記事を通じて、生体分子の3Dプリントに従事するユーザのコミュニティの発展に貢献するために私たちの目標です。重要なのは、NIHは、3Dモデル、それらに10を印刷するために使用される方法を共有するために公共のデータベースを確立しています。私たちは強く、このユニークなリソース(NIH 3DプリントExchangeに3Dモデルの印刷と背景情報をアップロードする方法については補足7を参照)への参加を奨励しています。
The authors have nothing to disclose.
The authors are grateful for the support of Deis3D, the Brandeis 3D Printing Club, and members of Brandeis Library/LTS/Makerlab. This work was funded in part by a grant awarded to Pomeranz Krummel by the NSF, Award No. 1157892; an ESIT grant of the BMBF, awarded to the University of Tübingen; and US Federal funds from the National Institutes of Health, Department of Health and Human Services, under Contract No. GS35F0373X. Molecular graphics and analyses were performed with the UCSF Chimera package. Chimera was developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).
Filament | |||
PLA 3D Printing Filament (1.0 kg Roll) | Quantum3D Printing | http://quantum3dprinting.com/ | Very good quality PLA filament, strongly recomended |
NinjaFlex Flexible 3D Printing Filament | Ninjatek | https://ninjatek.com/ | High quality flexible filament |
PLA Filaments PrimaValue & PrimaSelect | 3DPrima | http://3dprima.com/ | High quality European supplier of filament |
Printers | |||
Prusa I3 MK2 3D Printer | Prusa Research | http://www.prusa3d.com/ | A popular 3D printer |
MakerGear M2 Revision E (M2e) | MakerGear | http://www.makergear.com/ | Closed source, very high quality printer |
Ultimaker 2 | Ultimaker | https://ultimaker.com/ | Very reliable, easy to use printer, highest rating on 3Dhubs.com |
Flashforge Creator Pro | Flashforge | http://www.flashforge-usa.com | Reliable, dual extrusion printer, highest rating on 3Dhubs.com |
Software | |||
Simplify3D Slicer | Simplify3D | https://www.simplify3d.com/ | Excellent slicing software |
Netfabb | Autodesk | http://www.autodesk.com/education/free-software/netfabb | Mesh repair software, available free of cost for educational purposes |
Chimera | University of California, San Francisco | https://www.cgl.ucsf.edu/chimera/ | Chimera molecular vizualizer |
Meshmixer | Autodesk | http://www.meshmixer.com/ | Used for orienting models, but has other features |