A Time Resolved Microwave Conductivity technique for investigating direct and trap-mediated recombination dynamics and determining carrier mobilities of thin film semiconductors is presented here.
özellikle bu tür organo-kurşun halojenür perovskitteki olarak fotovoltaik malzemelerin ince film yarıiletkenlerdeki fotoğraf kaynaklı yük taşıyıcıların rekombinasyon dinamiklerini araştırmak için bir yöntem sunulmuştur. perovskit film kalınlığına ve emme katsayısı, ilk profilometre ve UV-VIS emilim spektroskopisi ile karakterize edilir. lazer gücü ve kavite, her iki hassasiyet yoklaması ayrıntılı olarak anlatılmıştır. Flaş fotoliz Zaman Çözümlemeli Mikrodalga İletkenlik (TRMC) deneyler için bir protokol, bir malzemenin iletkenliğini belirleyen bir temassız yöntem sunulmuştur. Mikrodalga, frekansın bir fonksiyonu olarak TRMC gerçekleştirerek karmaşık iletkenlik gerçek ve sanal bileşenlerini tanımlamak için bir yöntem verilmiştir. Yük taşıyıcı dinamiği (güç ve dalga boyu hem dahil) farklı uyarma rejimler altında belirlenir. doğrudan ve tuzak aracılı çürüme süreçleri arasında ayrım Teknikleri sunulmuş ve tartışılmıştır.Sonuçlar modellenmiş ve bir yarı iletken fotokimyasal yük taşıyıcıların genel kinetik modele atıfta bulunarak yorumlanır. tarif edilen teknikler organik ve inorganik fotovoltaik malzeme, nanopartiküller içeren optoelektronik malzeme, geniş bir yelpazede uygulanabilir ve ince filmler yarı iletken / iletken.
Flash photolysis zamana bağımlı mikrodalga iletkenlik (FP-TRMC) o yük taşıyıcı rekombinasyon süreçleri araştırmak için ideal bir aracı yapma, ns-us zaman ölçeğinde fotoğraf heyecanlı yük taşıyıcılarının dinamiklerini izler. ince film yarıiletkenlerdeki fotoğraf kaynaklı yük taşıyıcıların çürüme mekanizmalarının anlaşılması fotovoltaik cihaz optimizasyonu da dahil olmak üzere uygulamalar, bir dizi kilit öneme sahiptir. kaynaklı taşıyıcı ömürleri genellikle kaynaklı taşıyıcı yoğunluğu, dalgaboyu, hareketlilik, tuzak yoğunluğu ve yakalama oranı fonksiyonları bulunmaktadır. Bu kağıt taşıyıcı dinamik bağımlılıkları (yoğunluk, dalga boyu, mikrodalga frekansı) ve yorumların geniş bir yelpazede soruşturma zamanı Çözülmüş Mikrodalga İletkenlik (TRMC) tekniğinin çok yönlülüğünü gösteriyor.
Işıkla ücretleri kendi hareketlilik ve Degre bağlı gerçek ve bir malzemenin dielektrik sabiti hayali parçaları hem değiştirebilir hapsi / yerelleşme 1 e. Bir malzemenin iletkenliği karmaşık dielektrik sabiti ile doğru orantılıdır
nerede Mikrodalga elektrik alanının frekansı, ve dielektrik sabiti gerçek ve sanal kısımları vardır. Bu durumda, iletkenlik, gerçek kısmı dielektrik sabiti hayali bölümü ile ilgilidir, ve iletkenlik (daha sonra kutuplaşma olarak anılacaktır) hayali bölümü rezonans frekansında bir değişim ile ilişkili ise, mikrodalga emme üzerine eşlenebilir mikrodalga alanının 1.
t "> TRMC diğer tekniklere göre çeşitli avantajlar sunuyor. Örneğin, DC fotoiletkenlik ölçümleri elektrotlar ile malzeme temas kaynaklanan. Geliştirilmiş rekombinasyon elektrot / malzeme arayüzünde, geri ücretleri enjeksiyon bu arayüz üzerinden komplikasyonların bir dizi muzdarip, hem de eksitonlar ve geminate çiftleri gelişmiş ayrışma itibariyle vadesi uygulanan voltaja 2 ölçülen taşıyıcı hareketlilik ve yaşamlar çarpıklıklara yol açarlar. Buna karşılık için, TRMC kişileri arasında transferini şarj nedeniyle Sapmayan taşıyıcıların içsel hareketliliği ölçen bir electrodeless tekniktir .Taşıyıcı dinamikleri için bir prob olarak mikrodalga gücünü kullanarak önemli bir avantajı da yük taşıyıcılar, çürüme mekanizmalarının bozunma ömürleri izlenmesi olarak / yollar da incelenebilir olmasıdır.
TRMC toplam hareket 3 ve ömrünü belirlemek için kullanılabilirindüklenmiş yük taşıyıcıların süresi 4. Bu parametreler daha sonra, doğrudan ve tuzak aracılı rekombinasyon mekanizmaları 3, 5 arasında ayırt etmek için kullanılabilir. Bu iki ayrı bozunma yollarının bağımlılığı kantitatif taşıyıcı yoğunluğu 3, 5 ve uyarım enerji / dalga boyu 5 bir fonksiyonu olarak analiz edilebilir. Kaynaklı taşıyıcıların yerelleştirme / lohusalık (dielektrik sabiti gerçek bir parçası vs hayali) kutuplanabilirlik 5 vs iletkenlik çürüme karşılaştırılarak incelenebilir.
Buna ek olarak, ve belki de en önemlisi, TRMC yük taşıyıcı bozunma yollar olarak hareket tuzak durumları karakterize etmek için kullanılabilir. Yüzey tuzakları, örneğin, unpassivated örneklerin 6 vs pasifize karşılaştırarak toplu tuzakları ayırt edilebilir. Alt bandaralıklı devletler candoğrudan alt bandaralıklı uyarma enerjileri 5 kullanılarak araştırılmalıdır. Tuzak yoğunlukları TRMC verileri 7 oturtulması ile çıkarılabilir.
, Nanotüpler 1, organik yarı iletkenler 12, maddi karışımları gibi silikon 6, 8 ve TiO2 9, 10 gibi geleneksel ince film yarı iletkenler 11 nanopartiküller: nedeniyle bu tekniğin çok yönlülük, TRMC gibi malzemelerin geniş bir yelpazede çalışma uygulanmıştır 13, 14, ve hibrit fotovoltaik malzeme 3, 4, 5.
TRMC kullanılarak niceliksel bilgileri elde etmek için, doğru bir sayı tespit edebilmek için çok önemlidirBelirli bir optik uyarma için fotonlar emilir. İnce filmlerin, nanopartiküller, çözeltiler ve opak numunelerin emme ölçülmesi için yöntemler, farklı olduğundan, burada sunulan örnek hazırlama ve kalibrasyon teknikleri ince film örnekleri için özel olarak tasarlanmıştır. Ancak, sunulan TRMC ölçüm protokolü çok genel.
TRMC tekniği fotokimyasal yük taşıyıcı dinamikleri hakkında bilgi hazinesi sunabilir iken, bu iletkenlik dolaylı bir ölçüsüdür ve bu nedenle sonuçları yorumlanırken alınacak ihtiyaçlar bakım. TRMC tekniği toplam hareketlilik ölçer ve elektron ve delik hareketlilik ayırt etmek kullanılamaz. Bu değişiklik küçük (<% 5) 16 olduğu zaman iletkenliği yansıyan güç değiştirmek orantılı olduğunu altta yatan varsayım tutar. bozunumunda rezonans frekansı kayma büy…
The authors have nothing to disclose.
Acknowledgment is made to the Australian Research Council (LE130100146, DP160103008). JAG is supported via an Australian Postgraduate Award, and DRM by an ARC Future Fellowship (FT130100214). We thank Nikos Kopidakis for helpful discussions.
Hellmanex III detergent | Sigma Aldrich www.sigmaaldrich.com/catalog/product/sial/z805939?lang=en®ion=AU |
Z805939 | Corrosive and toxic. See SDS. |
Lead (II) iodide (99%) | Sigma Aldrich www.sigmaaldrich.com/catalog/product/aldrich/211168?lang=en®ion=AU |
211168 | Toxic. See SDS |
Anhydrous dimethylformamide (99.8%) | Sigma Aldrich www.sigmaaldrich.com/catalog/product/sial/227056?lang=en®ion=AU |
227056 | Toxic. See SDS |
Anhydrous dimethylsulfoxide (99.9%) | Sigma Aldrich www.sigmaaldrich.com/catalog/product/sial/276855?lang=en®ion=AU |
276855 | Toxic. See SDS |
Anhydrous 2-Propanol (99.5%) | Sigma Aldrich www.sigmaaldrich.com/catalog/product/sial/278475?lang=en®ion=AU&gclid= COnlgPaw780CFQZvvAod17EA4Q |
278475 | |
Methylammonium iodide | Dyesol www.dyesol.com/products/dsc-materials/perovskite-precursors/methylammonium-iodide.html |
MS101000 | Also sold by Sigma Aldrich |
Poly(methyl methacrylate) | Sigma Aldrich | 445746 | |
Anhydrous chlorobenzene (99.8%) | Sigma Aldrich www.sigmaaldrich.com/catalog/product/aldrich/445746?lang=en®ion=AU |
284513 | Toxic. See SDS |
Equipment | Company | Model | Comments/Description |
UV-VIS-NIR spectrophotometer | Perkin-Elmer | Lambda 900 | |
Profilometer | Veeco | Dektak 150 | |
Vector Network Analyzer | Keysight www.keysight.com/en/pdx-x201927-pn-N9918A/fieldfox-handheld-microwave-analyzer-265-ghz?cc=US&lc=eng |
Fieldfox N9918A | |
Tunable wavelength laser | Opotek www.opotek.com/product/opolette-355 |
Opolette 355 | |
Neutral density filters | Thorlabs www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=3193 |
NUK01 | |
Power meter | Thorlabs www.thorlabs.com/thorproduct.cfm?partnumber=PM100D |
PM100D | |
Power sensor | Thorlabs www.thorlabs.com/thorproduct.cfm?partnumber=S401C |
S401C | |
Cavity | Custom built | The cavity used in for this experiment was designed and built in-house. |