Aqui, apresentamos um protocolo para a in situ síntese de nanopartículas de ouro (AuNPs) dentro do espaço interlamelar de filmes de titanato de camadas sem a agregação de AuNPs. Nenhuma mudança foi observada espectral mesmo após 4 meses. O material sintetizado tem esperado aplicações em catálise, foto-catálise, e para o desenvolvimento de dispositivos plasmonic rentáveis.
Combinations of metal oxide semiconductors and gold nanoparticles (AuNPs) have been investigated as new types of materials. The in situ synthesis of AuNPs within the interlayer space of semiconducting layered titania nanosheet (TNS) films was investigated here. Two types of intermediate films (i.e., TNS films containing methyl viologen (TNS/MV2+) and 2-ammoniumethanethiol (TNS/2-AET+)) were prepared. The two intermediate films were soaked in an aqueous tetrachloroauric(III) acid (HAuCl4) solution, whereby considerable amounts of Au(III) species were accommodated within the interlayer spaces of the TNS films. The two types of obtained films were then soaked in an aqueous sodium tetrahydroborate (NaBH4) solution, whereupon the color of the films immediately changed from colorless to purple, suggesting the formation of AuNPs within the TNS interlayer. When only TNS/MV2+ was used as the intermediate film, the color of the film gradually changed from metallic purple to dusty purple within 30 min, suggesting that aggregation of AuNPs had occurred. In contrast, this color change was suppressed by using the TNS/2-AET+ intermediate film, and the AuNPs were stabilized for over 4 months, as evidenced by the characteristic extinction (absorption and scattering) band from the AuNPs.
Vários nanopartículas de metais nobres (MNPS) exibem cores características ou tons devido à sua ressonância de plasma de superfície localizada propriedades (LECC); Assim, MNPs pode ser usado em várias aplicações ópticas e / ou fotoquímicos 1-4. Recentemente, combinações de fotocatalisadores semicondutores de óxido metálico (MOS), tal como óxido de titânio (TiO 2) e MNPs, foram cuidadosamente investigados como novos tipos de fotocatalisadores 5-14. No entanto, em muitos casos, existem quantidades muito pequenas de MNPs na superfície do MOS, porque a maioria das partículas têm áreas de superfície MOS relativamente baixas. Por outro lado, os semicondutores de óxido de metal em camadas (LMOSs) exibem propriedades foto catalíticas e ter uma grande área superficial, tipicamente, várias centenas de metros quadrados por unidade de g de um LMOS 15-17. Além disso, vários LMOSs têm propriedades de intercalação (por exemplo, várias espécies químicas podem ser acomodados dentro dos seus espaços intercamada expansíveis e grandes) 15-20. Assim, com uma combinação de MNPS e LMOSs, espera-se que quantidades relativamente grandes de MNPs são hibridados com os fotocatalisadores semicondutores.
Nós relatamos o primeiro na síntese in situ de nanopartículas de cobre (CuNPs) 21 dentro do espaço intercalar de OVMs (titânia nanosheet; TNS 16-30) filmes transparentes através de passos muito simples. No entanto, os detalhes dos procedimentos de síntese e a caracterização dos outros híbridos MnPs e TNS nobres ainda não foram relatados. Além disso, os CuNPs dentro das camadas TNS foram facilmente oxidados e descorou-se sob as condições ambientes 21. Como tal, nós nos concentramos em nanopartículas de ouro (AuNPs), porque AuNPs são amplamente utilizados para vários óptica, fotoquímica e aplicações catalíticas, e espera-se que eles vão ser relativamente estável contra a oxidação 3-5,7,8,10-14 , 28,31,32. Aqui, nós relatamos a síntese de AuNPs dentro do espaço intercalar da TNS e mostrar that 2-ammoniumethanethiol (2-AET +; Figura 1 inserção) funciona eficazmente como um reagente de protecção para AuNPs dentro do intercalar da TNS.
Este manuscrito proporciona um protocolo detalhado para a síntese in situ de nanoparticulas de ouro (AuNPs) dentro do espaço interlamelar de filmes TNS. Este é o primeiro relatório do in situ síntese de AuNPs dentro do espaço intercalar da TNS. Além disso, descobrimos que o 2-AET + funciona como um reagente de protecção eficaz para AuNPs dentro do intercalar da TNS. Estes métodos hybridized AuNPs e TNS filmes transparentes. Filmes TNS com boa transparência óptica 21 fo…
The authors have nothing to disclose.
This work was partly supported by Nippon Sheet Glass Foundation for Materials Science and Engineering and JSPS KAKENHI (Grant-in-Aid for Challenging Exploratory Research, #50362281).
Methyl viologen dichloride | Aldrich Chemical Co., Inc. | 1910-42-5 | |
Tetrabutylammonium hydroxide | TCI | T1685 | |
cesium carbonate | Kanto Chemical Co., Inc. | 07184-33 | |
anatase titanium dixoide | Ishihara Sangyo Ltd. | ST-01 | |
hydrochloric acid | Junsei Chemical Co., Ltd. | 20010-0350 | |
sodium hydroxide | Junsei Chemical Co., Ltd. | 195-13775 | |
Tetrachloroauric(III) acid trihydrate | Kanto Chemical Co., Inc. | 17044-60 | |
sodium tetrahydroborate | Junsei Chemical Co., Ltd. | 39245-1210 | |
2-ammoniumethanethiol hydrochloride | TCI | A0296 | |
Ultrapure water (0.056 µS/cm) | Milli-Q water purification system (Direct-Q® 3UV, Millipore) | ||
Microscope slide (Thickness : 1.0∼1.2 mm) | Matsunami glass Co., Ltd. | ||