ここでは、AuNPsの凝集せず、層状チタン酸膜の層間空間内の金ナノ粒子(AuNPs)のin situ合成のためのプロトコルを提示します。いいえスペクトル変化はあっても4ヶ月後には観察されませんでした。合成された材料は、触媒、光触媒、及び費用対効果プラズモンデバイスの開発への応用が期待されています。
Combinations of metal oxide semiconductors and gold nanoparticles (AuNPs) have been investigated as new types of materials. The in situ synthesis of AuNPs within the interlayer space of semiconducting layered titania nanosheet (TNS) films was investigated here. Two types of intermediate films (i.e., TNS films containing methyl viologen (TNS/MV2+) and 2-ammoniumethanethiol (TNS/2-AET+)) were prepared. The two intermediate films were soaked in an aqueous tetrachloroauric(III) acid (HAuCl4) solution, whereby considerable amounts of Au(III) species were accommodated within the interlayer spaces of the TNS films. The two types of obtained films were then soaked in an aqueous sodium tetrahydroborate (NaBH4) solution, whereupon the color of the films immediately changed from colorless to purple, suggesting the formation of AuNPs within the TNS interlayer. When only TNS/MV2+ was used as the intermediate film, the color of the film gradually changed from metallic purple to dusty purple within 30 min, suggesting that aggregation of AuNPs had occurred. In contrast, this color change was suppressed by using the TNS/2-AET+ intermediate film, and the AuNPs were stabilized for over 4 months, as evidenced by the characteristic extinction (absorption and scattering) band from the AuNPs.
種々の貴金属ナノ粒子(MNPの)は、それらの局在表面プラズモン共鳴(LSPR)特性に特徴色または色調を呈します。従って、のMNPは、様々な光学的および/または光化学用途1-4で使用することができます。最近、金属酸化物半導体(MOS)は、酸化チタン(TiO 2)とのMNPのような光触媒の組み合わせは、十分に光触媒5-14の新しいタイプとして研究されてきました。ほとんどのMOS粒子は、比較的低い表面積を有するしかし、多くの場合、のMNPの非常に少量が、MOSの表面上に存在します。一方、層状金属酸化物半導体(LMOSs)光触媒特性を示し、大きな表面積を有し、LMOS 15-17の単位グラム当たり典型的には数百平方メートル。さらに、様々なLMOSsは、インターカレーション特性( すなわち、種々の化学種が、その拡張可能と大きな層間空間内に収容することができる)15-20を有します。したがって、のMNP及びLMOSsの組み合わせで、それのMNP比較的大量の半導体光触媒とハイブリダイズさせることが期待されます。
非常に単純な工程を経て透明フィルム;私たちは、LMOSの層間空間内の銅ナノ粒子(CuNPs)21のその場合成の最初の (TNS 16-30チタニアナノシート)を報告しています。しかし、合成手順の詳細、および他の貴族のMNPとTNSハイブリッドの特性はまだ報告されていません。また、TNS層内CuNPsは容易に酸化し、周囲条件下21の下で脱色しました。このように、我々はAuNPsが広く、様々な光学的、光化学的に使用されているため、金ナノ粒子(AuNPs)に着目し、触媒用途、それらが酸化に対して比較的安定であることが予想される3-5,7,8,10-14 、28,31,32。ここでは、TNSおよびshow股関節の層間空間内AuNPsの合成を報告しますトン2-ammoniumethanethiol(2-AET +; 図1挿入図)は、TNSの層間内AuNPsの保護試薬として有効に働きます。
この原稿は、TNSフィルムの層間空間内の金ナノ粒子(AuNPs)のin situ合成のための詳細なプロトコルを提供します。これは、TNSの層間空間内AuNPsのin situ合成の最初の報告です。さらに、我々は2-AET +は、TNSの層間内AuNPsのための有効な保護試薬として機能することがわかりました。これらのメソッドはAuNPsとTNS透明フィルムをハイブリダイズしました。プロトコルセクション…
The authors have nothing to disclose.
This work was partly supported by Nippon Sheet Glass Foundation for Materials Science and Engineering and JSPS KAKENHI (Grant-in-Aid for Challenging Exploratory Research, #50362281).
Methyl viologen dichloride | Aldrich Chemical Co., Inc. | 1910-42-5 | |
Tetrabutylammonium hydroxide | TCI | T1685 | |
cesium carbonate | Kanto Chemical Co., Inc. | 07184-33 | |
anatase titanium dixoide | Ishihara Sangyo Ltd. | ST-01 | |
hydrochloric acid | Junsei Chemical Co., Ltd. | 20010-0350 | |
sodium hydroxide | Junsei Chemical Co., Ltd. | 195-13775 | |
Tetrachloroauric(III) acid trihydrate | Kanto Chemical Co., Inc. | 17044-60 | |
sodium tetrahydroborate | Junsei Chemical Co., Ltd. | 39245-1210 | |
2-ammoniumethanethiol hydrochloride | TCI | A0296 | |
Ultrapure water (0.056 µS/cm) | Milli-Q water purification system (Direct-Q® 3UV, Millipore) | ||
Microscope slide (Thickness : 1.0∼1.2 mm) | Matsunami glass Co., Ltd. | ||