Summary

Großflächige Rekonstruktionen und Independent, Unvoreingenommene Clustering Basierend auf Morphologische Metriken Klassifizieren Neurons in Selective Populations

Published: February 15, 2017
doi:

Summary

Dieses Protokoll beschreibt groß angelegte Rekonstruktion selektiver neuronaler Populationen, etikettiert folgende retrograden Infektion mit einem modifizierten Tollwutvirus Fluoreszenzmarker exprimieren, und unabhängig, unvoreingenommen Clusteranalysen, umfassende Charakterisierung der morphologischen Metriken unter verschiedene neuronale Subklassen ermöglichen.

Abstract

Dieses Protokoll beschreibt groß angelegte Rekonstruktion von Neuronen, die mit der Verwendung von unabhängigen und unvoreingenommenen Clustering kombiniert Analysen einen umfassenden Überblick über die morphologischen Merkmale unter einer selektiven neuronalen Population beobachtet zu schaffen. Die Kombination dieser Techniken stellt einen neuartigen Ansatz für die Sammlung und Analyse von Daten neuroanatomischen. Gemeinsam ermöglichen diese Techniken in großem Maßstab, und damit umfassendere, Probenahme selektiver neuronaler Populationen und unvoreingenommene quantitative Methoden etablieren zur Beschreibung morphologisch eindeutige neuronale Klassen innerhalb einer Population.

Das Protokoll beschreibt die Verwendung von modifizierten Tollwutvirus, selektiv Neuronen etikettieren. G-gelöscht Tollwut-Virus wirkt wie ein retrograden Tracers folgende stereotaktische Injektion in eine Zielgehirnstruktur von Interesse und dient als Vehikel für die Lieferung und die Expression von EGFP in Neuronen. Eine große Anzahl von Neuronen verwenden diese infiziertTechnik und Express GFP während ihrer Dendriten "Golgi-like" vollständige Füllungen von einzelnen Neuronen zu erzeugen. Dementsprechend verbessert sich die Virus-vermittelte retrograden Tracing Verfahren auf traditionelle farbstoffbasierte Rückverfolgungstechniken durch vollständige intrazelluläre Füllungen erzeugen.

Einzelne gut isolierte Neuronen quer durch alle Regionen des Gehirns untersuchten Bereich sind für den Wiederaufbau, um eine repräsentative Stichprobe von Neuronen zu erhalten ausgewählt. Das Protokoll beschreibt Verfahren Zellkörper zu rekonstruieren und dendritischen arborization Muster von markierten Neuronen über mehrere Gewebeschnitte vollenden. Morphologische Daten, einschließlich der Positionen jedes Neuron in der Gehirnstruktur, werden zur weiteren Analyse extrahiert. Standard-Programmierfunktionen wurden verwendet, um unabhängige Cluster Analysen durchzuführen und Cluster-Auswertungen auf Basis von morphologischen Metriken. Um die Nützlichkeit dieser Analysen statistische Auswertung einer Clusteranalyse perfo verifizierenRMED auf 160 Neuronen im Nucleus reticularis des Thalamus (TRN) von Makaken rekonstruiert wurde gemacht. Sowohl die ursprünglichen Cluster-Analyse und die statistischen Auswertungen hier durchgeführt zeigen, dass TRN Neuronen in drei Subpopulationen getrennt werden, jede mit einzigartigen morphologischen Eigenschaften.

Introduction

Neuroanatomie ist eine der Grundlagen der Neurowissenschaften 1 und aktuelle Interesse an der "connectomics" Begeisterung für das Verständnis der morphologischen Vielfalt neuronaler Populationen und die Verbindungen zwischen bestimmten Neuronen 2 erneuert. Verfahren zur Markierung und Rekonstruktion Neuronen stark mit den jüngsten Innovationen verbessert, einschließlich der genetischen und Virus-vermittelte Schaltung Tracing nähert 3, 4 und ermöglicht umfassendere morphologische Untersuchungen neuronaler Populationen 5. Neben Verbesserungen bei der Markierung einzelner Neuronen wurden quantitative Datenanalysetechniken entstanden auch , dass ermöglichen unabhängige und unvoreingenommene Klassifizierung von Neuronen in verschiedene Subpopulationen basierend auf morphologischen Daten 5, 6. Diese unvoreingenommene Techniken sind eine Verbesserung auf mehr traditional qualitative Klassifikationsverfahren, die den Standard im Bereich gewesen sind seit mehr als einem Jahrhundert. Das Ziel dieser Studie zu skizzieren ist, Schritt-für-Schritt wird die Kombination von virusvermittelten Kennzeichnung von Neuronen in einem selektiven Bevölkerung Groß Rekonstruktionen eines umfassenden Probe dieser Neuronen und quantitative Datenanalyse auf der Grundlage unabhängiger clustering mit statistische Auswertung. Durch die Kombination dieser Methoden beschreiben wir einen neuen Ansatz in Richtung auf die Sammlung und Analyse von Daten neuroanatomischen umfassenden Probenahme und unvoreingenommene Klassifizierung von morphologisch einzigartigen neuronalen Typen innerhalb eines selektiven neuronalen Population zu erleichtern.

Als ein Beispiel dieser Methoden beschreiben wir unsere Analyse einer großen Population von Neuronen innerhalb eines einzelnen Sektors des Nucleus reticularis (TRN) des Makaken-Affen. Diese Daten stammen aus einer früheren Studie 7. Verfahren zur selektiven Markierung von Neuronen TRN Projizieren auf die dorsale lateral geniculate Thalamuskern (dCGL) chirurgische Injektion von modifizierten Tollwutvirus mit EGFP kodiert , 4, 8 (siehe Tabelle spezifischer Materialien / Ausrüstung, Zeile 2) skizziert. Dieses modifizierte Tollwutvirus fehlt das Gen, das ein wesentlicher Hüllprotein kodiert, trans-synaptischen Bewegung des Virus zu eliminieren. Sobald das Virus Axonterminalen an der Injektionsstelle eintritt, wirkt es wie ein herkömmlicher retrograder Tracer mit dem wichtigen Vorteil der Fahr EGFP – Expression während der gesamten dendritischen arborization von infizierten Neuronen 5, 9, 10. Dementsprechend wurde dieser G-gelöscht Tollwutvirus selektiv genutzt werden, um zu infizieren und alle neuronalen Population beschriften der Injektion und retrograden Transport.

Um eine umfassende Analyse eines spezifischen neuronalen Population durchzuführen, ist es wichtig, aus zu probiereneine breite Verteilung von Neuronen in der Bevölkerung. Weil das Virus-vermittelte Markierungstechnik vollständige intrazellulär produziert ", Golgi-like" füllt vieler Neuronen mit Neuriten bei dem Virus Injektionsstelle ist es möglich, eine sehr große Stichprobe von Neuronen innerhalb des vollen Ausmaß einer Hirnstruktur zu rekonstruieren. Darüber hinaus, da das modifizierte Tollwutvirus zu infizieren und Beschriften große Anzahl von Neuronen, so wirksam ist, ist es möglich, Hunderte von Neuronen pro Tier zu rekonstruieren. Verfahren zur Probenahme 160 Neuronen im gesamten visuellen Sektor der TRN 11, um eine umfassende Stichprobe von dCGL ragende TRN Neuronen zu erzeugen , werden skizziert. Der Prozess einzelnen Neuronen der Rekonstruktion eines Neurons Rekonstruktionssystem mit einem Mikroskop, Kamera und Rekonstruktionssoftware beschrieben. Ebenfalls beschrieben sind Verfahren Positionen einzelner Neuronen innerhalb einer Hirnstruktur (in diesem Fall innerhalb des TRN) zu bestimmen, und der Virusinjektion sit zu überprüfene und ihren Standort innerhalb einer Struktur (in diesem Fall innerhalb der dCGL) Volumenkontur Rekonstruktionen. Schritte morphologischen Daten zu exportieren und unabhängige Cluster Durchführung von Analysen auf Basis von morphologischen Metriken für jedes Neuron gemessen beschrieben werden. Es gibt Einschränkungen Clusterverfahren und es gibt auch eine Vielzahl von verschiedenen Clustering-Algorithmen zur Verfügung. Dementsprechend diese Optionen und die Vorteile einiger der häufiger verwendeten Algorithmen werden beschrieben. Die Clusteranalyse liefert keine statistische Überprüfung der Eindeutigkeit von Clustern. Daher sind zusätzliche Schritte skizziert sowie optimale Clustering, um zu überprüfen, wie die Beziehungen zwischen den morphologischen Daten innerhalb und zwischen den Clustern. Statistische Methoden für die Cluster für die TRN-Datensatz bewerten, die TRN Neuronen zu bestätigen sind in drei einzigartige Cluster basierend auf 10 unabhängige morphologische Metriken beschrieben werden.

Somit wird durch Schritte zum selektiven Kennzeichnung umreißt, Rekonstruktion und morphologischen Daten aus einer bestimmten neuronalen Population zu analysieren, beschreiben wir Methoden für die innerhalb einer Population morphologische Unterschiede zwischen den Neuronen zu quantifizieren. Vor Ergebnisse verschiedener neuronaler Typen innerhalb des visuellen Bereichs des Makaken TRN mit separaten statistischen Auswertungsverfahren bestätigt. Gemeinsam hoffen wir, diese Techniken zu neuroanatomischen Datensätze breit anwendbar sein und dazu beitragen, quantitative Klassifizierung der Vielfalt neuronaler Populationen durch das Gehirn etablieren.

Protocol

Hinweis: Die in dieser Studie untersuchten Gewebe als Teil einer separaten Studie 5 hergestellt. Daher können alle der Versuchsmethoden die Verwendung von Tieren beteiligt sind ausführlich in der Experimental Methods Abschnitt von Briggs et al. (2016). Alle Verfahren mit Tieren als Teil des Standes der Studie wurden von der Institutional Animal Care und Verwenden Ausschüsse genehmigt. 2 – Die Schritte zur Injektion des Virus in die dCGL und histologische Verarbeitung von Gehirngewebe …

Representative Results

Wir haben zuvor gezeigt , dass große Rekonstruktionen von Neuronen in einem selektiven Population ist durchführbar nach der Injektion von modifizierten Tollwutvirus in den dCGL 5. Vor kurzem wurde das gleiche Gewebe 160 Neuronen im visuellen Bereich des TRN zu rekonstruieren verwendet (Bragg et al, Revue;. 2A-B) nach den detaillierten Verfahrensschritte oben beschrieben wurde . In der TRN-Studie, drei einzigartige Cluster von TRN Neuronen wurden auf…

Discussion

Neuroanatomische Studien haben eine Säule der Neurowissenschaft und aktuelle Interesse an connectomics und Struktur-Funktionsbeziehungen blieb die Begeisterung für detaillierte morphologische Charakterisierung von selektiven neuronalen Populationen erneuert. Traditionell haben die neuroanatomische Studien über qualitative Einstufungen von Neuronen in morphologisch unterschiedliche Klassen von Neuronen, die durch Experten Neuroanatomen definiert verlassen. Mit den Fortschritten in den Techniken für Neuronen zu rekons…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Wir möchten Drs danken. Ed und Callaway Marty Usrey dafür, dass wir das Gewebe als Teil einer früheren Studie und Libby Fairless und Shiyuan Liu für die Hilfe bei der neuronalen Rekonstruktionen vorbereitet zu verwenden. und der Whitehall-Stiftung: Diese Arbeit wurde durch die NIH (EY018683 NEI) gefördert.

Materials

SADΔG-EGFP E.M. Callaway Laboratory, Salk Institute Prepared by Dr. F. Osakada. G-deleted rabies virus available through the Salk Institute Viral Core
Recording electrode: platinum/iridium or tungsten FHC UEPSGGSE1N2M Visit website (www.fh-co.com) for alternative order specifications
Nanoject II Drummod Scientific 3-000-204, 110V Alternatives: picospritzer, Hamilton syringe
Freezing microtome Thermo Scientific
DAB Sigma Aldrich D5905-50TAB 3,3'-Diaminobenzidine tetrahydrochloride, tablet, 10 mg substrate per tablet. Caution: carcinogen – must be bleached before discarding
Cytochrome C Sigma Aldrich C2037-100MG
Catalase Sigma-Aldich C9322-5G
Rabbit anti-GFP Life Technologies/Thermo Fisher #A-11122  Primary antibody
Biotinylated goat anti-rabbit Vector Laboratories #BA-1000 Secondary antibody
Neurolucida System  MicroBrightField Software for neuron tracing and analysis. http://www.mbfbioscience.com/neurolucida
Neurolucida Explorer MicroBrightField Data export software
Microfire Camera  Optronics 2-Megapixel true color microscope camera. http://www.simicroscopes.com/pdfs/microfire.pdf
Nikon E800 Microscope Nikon Instruments Inc. Biological research microscope. http://www.microscopyu.com/museum/eclipseE800.html
Matlab The MathWorks Inc.  Matrix-based computational mathematics software. http://www.mathworks.com
Microsoft Office Excel Microsoft Spreadsheet program

References

  1. Cajal, S. R. y. . Histologie du systeme nerveaux de l’homme et des vertebres. , (1911).
  2. Seung, H. S. Toward functional connectomics. Nature. 471, 170-172 (2011).
  3. Callaway, E. M. Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology. 18, 1-7 (2009).
  4. Wickersham, I. R., Finke, S., Conzelmann, K. K., Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods. 4, 47-49 (2007).
  5. Briggs, F., Kiley, C. W., Callaway, E. M., Usrey, W. M. Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron. 90, 388-399 (2016).
  6. Cauli, B., et al. Classification of fusiform neocortical interneurons based on unsupervised clustering. PNAS. 97, 6144-6149 (2000).
  7. Bragg, E. M., Fairless, E. A., Liu, S., Briggs, F. Morphology of visual sector thalamic reticular neurons in the macaque monkey sugests retinotopically-specialized, parallel stream-mixed input to the lateral geniculate nucleus. J. Comparative Neurology. 525 (5), 1273-1290 (2017).
  8. Osakada, F., et al. New rabies virus varients for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron. 71, 617-631 (2011).
  9. Callaway, E. M., Luo, L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. Journal of Neuroscience. 35, 8979-8985 (2015).
  10. Nhan, H. L., Callaway, E. M. Morphology of superior colliculus- and middle temporal area-projecting neurons in primate primary visual cortex. J. Comparative Neurology. 520, 52-80 (2012).
  11. Pinault, D. The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews. 46, 1-31 (2004).
  12. Gage, G. J., Kipke, D. R., Shain, W. Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments. 65, e3564 (2012).
  13. Wong-Riley, M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research. 171, 11-28 (1979).
  14. Gerfen, C. R. Basic neuroanatomical methods. Current Protocols in Neuroscience. Chapter 1, Unit 1.1 (2003).
  15. Thorndike, R. L. Who belongs in the family?. Psychometrika. 18, 267-276 (1953).
  16. Talebi, V., Baker, C. I. Categorically distinct types of receptive fields in early visual cortex. Journal of Neurophysiology. 115, 2556-2576 (2016).
  17. Helmstaedter, M., et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature. 500, 168-174 (2013).

Play Video

Cite This Article
Bragg, E. M., Briggs, F. Large-scale Reconstructions and Independent, Unbiased Clustering Based on Morphological Metrics to Classify Neurons in Selective Populations. J. Vis. Exp. (120), e55133, doi:10.3791/55133 (2017).

View Video