Aqui apresentamos um protocolo para medir a força das interações entre uma superfície inorgânica bem definida e tanto peptídeos ou aminoácidos por única molécula de medidas de espectroscopia de força utilizando um microscópio de força atômica (AFM). As informações obtidas a partir da medição é importante para entender melhor a interfase material de peptídeo-inorgânico.
As interacções entre as proteínas ou péptidos e materiais inorgânicos levar a vários processos interessantes. Por exemplo, combinando proteínas com minerais conduz à formação de materiais compósitos com propriedades únicas. Além disso, o processo de incrustação biológica indesejável é iniciada pela adsorção de biomoléculas, principalmente proteínas, nas superfícies. Esta camada orgânica é uma camada de adesão de bactérias e que lhes permite interagir com a superfície. Compreender as forças fundamentais que governam as interações na interface orgânica-inorgânica, é importante para muitas áreas de pesquisa e poderia levar à concepção de novos materiais para aplicações ópticas, mecânicas e biomédicas. Este artigo demonstra uma técnica de espectroscopia de força única molécula que utiliza um AFM para medir a força de aderência entre ambos péptidos ou aminoácidos e superfícies inorgânicas bem definidas. Esta técnica envolve um protocolo para a fixação da biomolécula a AFMponta através de um ligante flexível covalente e única molécula de medidas de espectroscopia de força por parte microscópio de força atômica. Além disso, uma análise dessas medidas está incluída.
A interacção entre as proteínas e minerais inorgânicos conduz à construção de materiais compósitos com propriedades distintivas. Isto inclui materiais com elevada resistência mecânica ou as propriedades ópticas únicas. 1, 2, por exemplo, a combinação da proteína de colagénio com a hidroxiapatite mineral, quer gera ossos moles ou duras para diferentes funcionalidades. 3 péptidos curtos, também podem ligar-se materiais inorgânicos com alta especificidade. 4, 5, 6 A especificidade destes péptidos foi usado para a criação de novos materiais magnéticos e electrónicos, 7, 8, 9 fabricar materiais nanoestruturados, crescimento de cristais, 10 e sintetizar nanopartículas. 11 Para entender o mecanismo subjacente interações entre peptídeos ou proteínas e materiais inorgânicos, portanto, nos permitem projetar novos materiais compósitos com melhores propriedades de adsorção. Além disso, uma vez que a interfase de implantes com uma resposta imunitária é mediada por proteínas, uma melhor compreensão das interacções de proteínas com materiais inorgânicos vai melhorar a nossa capacidade para conceber implantes. Outra área importante, que envolve proteínas que interagem com superfícies inorgânicas é a fabricação de materiais anti-incrustações. 12, 13, 14, 15 A incrustação biológica é um processo em que organismos indesejáveis anexar a uma superfície. Ele tem muitas implicações prejudiciais sobre nossas vidas. Por exemplo, biofouling de bactérias sobre dispositivos médicos leva a infecções hospitalares. Biofouling de organismos marinhos em barcos e navios de grande porte aumenta o o consumo de combustível. 12, 16, 17, 18
-Molécula única força espectroscopia (SMFS), usando um AFM, pode medir directamente as interacções entre um aminoácido ou um péptido com um substrato. 19, 20, 21, 22, 23, 24, 25, 26 Outros métodos, como a exibição de fagos, 27, 28 microbalança de cristal de quartzo (QCM) 29 ou ressonância de plasma de superfície (SPR) 29, 30, 31, 32,ref "> 33 medida as interações de peptídeos e proteínas para superfícies inorgânicas em massa. 34, 35, 36 Isto significa que os resultados obtidos por estes métodos referem-se a conjuntos de moléculas ou agregados. Em SMFS, uma ou poucas moléculas são fixadas à ponta de AFM e as suas interacções com o substrato desejado é medido. Esta abordagem pode ser expandido para estudar o dobramento de proteínas, puxando a proteína a partir da superfície. Além disso, ele pode ser usado para medir as interacções entre células e proteínas e a ligação dos anticorpos para os seus ligandos. 37, 38, 39, 40 Este artigo descreve detalhadamente como anexar tanto peptídeos ou aminoácidos para a ponta do AFM usando química silanol. Além disso, o documento explica como realizar medições de força e como analisar aresultados.
Os passos 1.3, 1.4 e 1.7 no protocolo deve ser realizado com cuidado extenso e de uma forma muito suave. No passo 1.3, a ponta não deve estar em contacto com a mistura de silano e o processo de silanização deve ser realizada numa atmosfera inerte (de humidade livre). 45 Isto é feito a fim de evitar a formação de camadas múltiplas e porque as moléculas de silano prontamente sofrer hidrólise na presença de humidade. 45
No passo 1.4, a t…
The authors have nothing to disclose.
This work was supported by the Marie Curie International Reintegration Grant (EP7). P. D. acknowledges the support of the Israel Council for Higher Education.
Silicon nitride (Si3N4) AFM cantilevers with silicon tips | Bruker (Camarilo, CA, USA) | MSNL10, nominal cantilevers radius ~2 nm | |
Methyltriethoxysilane | Acros Organics (New Jersey, USA) | For Silaylation of the AFM tip | |
3-(Aminopropyl) triethoxysilane | Sigma-Aldrich (Jerusalem, Israel) | Used for tip modification | |
Triisopropylsilane | Sigma-Aldrich (Jerusalem, Israel) | Used for tip modification | |
N-Ethyldiisopropylamine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Triethylamine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Piperidine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Fluorenylmethyloxycarbonyl-PEG-N-hydroxysuccinimide (Fmoc-PEG-NHS) | Iris Biotech GmbH (Deutschland, Germany) | Used as the covalent flexible linker (MW = 5000 Da) | |
2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate (HBTU) | Alfa Aser (Heysham, England) | Used as a coupling reagent. | |
N-methyl-2-pyrrolidone (NMP) | Acros Organics (New Jersey, USA) | Used as Solvent in Tip modification procedure | |
DMF (dimethylformamide) | Merck (Darmstadt, Germany) | Used as Solvent in Tip modification procedure | |
Trifluoro acetic acid (TFA) | Merck (Darmstadt, Germany) | ||
Acetic anhydride | Merck (Darmstadt, Germany) | ||
Peptides | GL Biochem (Shanghai, China). | ||
Phenylalanine and Tyrosine | Biochem (Darmstadt, Germany) | ||
30% TiO2 dispersion in the mixture of solvent 2-(2-Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) | Applied Vision Laboratories (Jerusalem, Israel) | (30%) in the mixture of solvent 2-(2 Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) | |
Mica substrates | TED PELLA, INC. (Redding, California, USA) | 9.9 mm diameter |