ここでは、原子間力顕微鏡(AFM)を用いて、単一分子力分光測定によって明確に定義された無機表面のいずれかのペプチドまたはアミノ酸との間の相互作用の力を測定するためのプロトコルを提示します。測定から得られた情報は、より良好なペプチド無機材料相間を理解することが重要です。
タンパク質またはペプチドと無機材料との間の相互作用は、いくつかの興味深いプロセスにつながります。例えば、無機物でタンパク質を結合する独特の特性を有する複合材料の形成をもたらします。また、生物付着の好ましくないプロセスが表面上の生体分子、主にタンパク質の吸着によって開始されます。この有機層は、細菌のための接着層であり、それらは表面と相互作用することを可能にします。有機 – 無機界面での相互作用を支配する基本的な力を理解することは、研究の多くの分野のためには重要であると、光学機械的および生物医学的用途のための新しい材料の設計につながる可能性があります。本稿では、ペプチドまたはアミノ酸と明確に定義された無機表面のいずれかとの間の接着力を測定するために、AFMを利用して単一分子力分光法の技法を示しています。この技術は、AFMに生体分子を付着するためのプロトコルを含みます原子間力顕微鏡による共有結合柔軟なリンカーおよび単一分子力分光測定を通じて先端。また、これらの測定値の分析が含まれます。
タンパク質および無機鉱物との間の相互作用は、独特の特性を有する複合材料の構築につながります。これは、高い機械的強度、または独自の光学特性を有する材料を含みます。例えば、 図1、 図2は 、鉱物ヒドロキシアパタイトとタンパク質コラーゲンの組み合わせは、異なる機能のための軟質または硬質の骨のいずれかを生成します。 3短いペプチドはまた、特異性の高い無機材料をバインドすることができます。 4、5、これらのペプチドの6特異性は、結晶を成長させる、9ナノ構造材料を製造する、8、7、新たな磁気及び電子材料を設計するために使用されています、 10とナノ粒子を合成します。 図11は、ペプチドまたはタンパク質と無機材料との間の相互作用の根底にあるメカニズムを理解することは、したがって、私たちは改善された吸着特性を持つ新しい複合材料を設計することができるようになります。免疫応答とインプラントの間期は、タンパク質によって媒介されるので、また、より良い無機物質とタンパク質の相互作用を理解することは、インプラントを設計する当社の能力を向上させます。無機表面と相互作用するタンパク質が関与するもう一つの重要な領域は、防汚材料の製造です。 12、13、14、15生物付着生物が表面に付着する望ましくないプロセスです。それは私たちの生活に多くの有害な影響を与えます。例えば、医療機器上の細菌の生物付着は、院内感染につながります。ボートや大型船舶の海洋生物の生物付着が増加します燃料の消費量。 12、16、17、18
単一分子力分光法(SMFS)は、AFMを用いて、直接アミノ酸または基質とペプチドの間の相互作用を測定することができます。このようなファージディスプレイ、27、28と19、20、21、22、23、24、25、26他の方法 水晶微量天秤(QCM)29または表面プラズモン共鳴(SPR)29、30、31、32、REF "> 33小節バルク中の無機表面へのペプチドおよびタンパク質の相互作用。34、35、36 これは、これらの方法により得られた結果は、分子または凝集体の集合に関連することを意味します。 SMFSでは、1つまたは非常に少数の分子は、AFMチップに固定されており、所望の基材との相互作用が測定されます。このアプローチは、表面からのタンパク質を引っ張ることによって、タンパク質のフォールディングを研究するために拡張することができます。また、細胞タンパク質およびそれらのリガンドに対する抗体の結合との間の相互作用を測定することができます。 37、38、39、40本稿では、シラノール化学を用いてAFMチップにペプチドまたはアミノ酸のいずれかを接続する方法を詳細に説明しています。また、紙は力の測定を実行する方法および分析する方法について説明します結果。
1.3の手順、プロトコル1.4と1.7は、大規模な注意を払って、非常に穏やかな方法で行われるべきです。ステップ1.3において、チップは、シラン混合物と接触してはならず、シラン化処理は、不活性雰囲気(無水)で行われるべきです。 45これは、多層の形成を防止するために、シラン分子が容易に水分の存在下で加水分解を受けるために行われます。 45
<…The authors have nothing to disclose.
This work was supported by the Marie Curie International Reintegration Grant (EP7). P. D. acknowledges the support of the Israel Council for Higher Education.
Silicon nitride (Si3N4) AFM cantilevers with silicon tips | Bruker (Camarilo, CA, USA) | MSNL10, nominal cantilevers radius ~2 nm | |
Methyltriethoxysilane | Acros Organics (New Jersey, USA) | For Silaylation of the AFM tip | |
3-(Aminopropyl) triethoxysilane | Sigma-Aldrich (Jerusalem, Israel) | Used for tip modification | |
Triisopropylsilane | Sigma-Aldrich (Jerusalem, Israel) | Used for tip modification | |
N-Ethyldiisopropylamine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Triethylamine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Piperidine | Alfa-Aesar (Lancashire, UK) | Used for tip modification | |
Fluorenylmethyloxycarbonyl-PEG-N-hydroxysuccinimide (Fmoc-PEG-NHS) | Iris Biotech GmbH (Deutschland, Germany) | Used as the covalent flexible linker (MW = 5000 Da) | |
2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate (HBTU) | Alfa Aser (Heysham, England) | Used as a coupling reagent. | |
N-methyl-2-pyrrolidone (NMP) | Acros Organics (New Jersey, USA) | Used as Solvent in Tip modification procedure | |
DMF (dimethylformamide) | Merck (Darmstadt, Germany) | Used as Solvent in Tip modification procedure | |
Trifluoro acetic acid (TFA) | Merck (Darmstadt, Germany) | ||
Acetic anhydride | Merck (Darmstadt, Germany) | ||
Peptides | GL Biochem (Shanghai, China). | ||
Phenylalanine and Tyrosine | Biochem (Darmstadt, Germany) | ||
30% TiO2 dispersion in the mixture of solvent 2-(2-Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) | Applied Vision Laboratories (Jerusalem, Israel) | (30%) in the mixture of solvent 2-(2 Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) | |
Mica substrates | TED PELLA, INC. (Redding, California, USA) | 9.9 mm diameter |