The present protocol describes a mouse microsurgery infusion technique, which effectively delivers substances directly into the brain via the internal carotid artery.
Animal models of central nervous system (CNS) diseases and, consequently, blood-brain barrier disruption diseases, require the delivery of exogenous substances into the brain. These exogenous substances may induce injurious impact or constitute therapeutic strategy. The most common delivery methods of exogenous substances into the brain are based on systemic deliveries, such as subcutaneous or intravenous routes. Although commonly used, these approaches have several limitations, including low delivery efficacy into the brain. In contrast, surgical methods that locally deliver substances into the CNS are more specific and prevent the uptake of the exogenous substances by other organs. Several surgical methods for CNS delivery are available; however, they tend to be very traumatic. Here, we describe a mouse infusion microsurgery technique, which effectively delivers substances into the brain via the internal carotid artery, with minimal trauma and no interference with normal CNS functionality.
In vivo models of central nervous system (CNS) diseases require an effective delivery of exogenous substances, such as drugs, pathogens, or exosomes, into the brain. Therefore, an ideal delivery method should cause minimal trauma to the animal, preserve the integrity of the neuronal network, and achieve high substance concentrations in the brain 1.
Several surgical methods of local substance delivery have been described, including intra-sheath, intracerebral, and intraventricular injections or implants 2,3,4,5. These approaches, however, are considered traumatic to the CNS, and allow administration of only low volumes of the substance of interest. Moreover, it has been suggested that exogenous substances can be rapidly removed by the cerebrospinal fluid 6, and a low penetration range to the brain parenchyma has been observed 7 when the above-mentioned techniques are employed. Systemic delivery methods, such as oral, pulmonary, subcutaneous, and intravenous routes, are more commonly used in animal models, though they exhibit low effectiveness in delivering the substances to the CNS, due to uptake by other organs 8,9. Therefore, these routes of delivery require elevated doses of the administrated substances, increasing the risk of side effects and toxicity 10,11.
Here, we describe a mouse infusion microsurgery technique, which effectively delivers substances directly into the brain via the internal carotid artery. In addition to targeting the delivery to the CNS, this technique does not bypass normal physiological barriers and is therefore highly relevant to biological processes involved in the passages of therapeutics or pathogens into the brain.
The procedures involved in the following protocol have been approved by the University of Miami Institutional Animal Care and Use Committee (IACUC). In addition, all procedures are being conducted in facilities approved by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).
1. Preparation of Mice for Surgery
2. Dissection of the Common Carotid Artery (CCA)
3. Preparation of the CCA for Substance Infusion
4. Substance Infusion via ICA
5. Post Infusion Procedures
6. Incision Closing and Post-operative Care
The mouse infusion microsurgery technique described here is very versatile and has been used to deliver different substances directly into the brain, including the delivery of tumor cells in a representative model of brain metastasis formation 1,12.
This technique is also suitable to assess the pathological aspects of different pathogens in the CNS. In a mouse model of HIV infection, the infusion surgery was used to inject viral particles directly into the CCA. We found that 7 days after surgery, the CNS was positive for HIV by real-time PCR. Furthermore, the ipsilateral hemisphere infection was 6-10 folds higher than the contralateral hemisphere (Figure 2).
Another suitable approach of the infusion surgery described here is to deliver extracellular vesicles (ECVs), mainly exosomes, into the CNS. Figure 3 shows the presence of CD63, a marker for exosomes, labeled with green fluorescent protein (GFP) in the ipsilateral brain of a mouse 24 hr after infusion.
Figure 1: Schematic Representation of the Infusion via the Internal Carotid Artery. In the insert (a) and (b) depict the localization of the upper and lower knots, respectively; (c) represents the small cut in the ECA, through which the capillary tubing is inserted (gray line). Please click here to view a larger version of this figure.
Figure 2: HIV Detection by Real-time PCR after Viral Infusion via the Internal Carotid Artery. Bars indicate mean HIV DNA levels harvested from mice 7 days post the infusion via the left internal carotid artery. Error bars depict standard deviation. Please click here to view a larger version of this figure.
Figure 3: Immunofluorescence of Mouse Brain Section Depicting GFP-tagged CD63, an Exosome Marker, after ECVs Infusion via the Internal Carotid Artery. The representative image depicts a mouse brain microvessel associated with CD63 expressing ECVs (green). Scale bar: 50 µm. Please click here to view a larger version of this figure.
The infusion microsurgery described here has been proved to be very successful in delivering exogenous substances of various biological features into the CNS, preventing unwanted dissemination throughout the body 1,12. Disruption of the blood-brain barrier is a pathological characteristic of several CNS-related diseases; therefore assessing the relationship of exogenous substances with the blood-brain barrier is of major importance and interest.
This surgery model presented causes limited trauma to the animals and is associated with very low mortality 1,12. Moreover, the procedure does not interfere with the CNS function or cerebral blood flow 1,12. The most critical aspect of this procedure is to perform the correct cut in the ECA, which should only allow the insertion of the capillary tubing. A wider cut will cause leaking of the substance to be infused, requiring another ECA surgery on the opposite site. In order to prevent this situation, the capillary tubing should have a bigger diameter than the cut, and should also have a sharp edge in order to facilitate its entrance through the artery. Regarding the technical aspect, a fully trained personnel is able to perform this surgery within 20 minutes.
The major limitation of this technique is the possibility of infusion only once through the same ICA. For repeated substance delivery into the CNS, a vessel microport needs to be used and has been described previously 1.The technique described here has the potential to assist in the studies on new positive and negative interactions within the BBB, as well as to deliver pathogens, drugs, and physiological agents into the brain.
The authors have nothing to disclose.
We would like to thank Dr. Lei Chen (Icahn School of Medicine at Mount Sinai, NY) who first established the use of this model in our laboratory, and to Dr. Gretchen Wolff (German Cancer Research Center, Heidelberg, Germany) for disseminating the technique in our laboratory. Supported in part by HL126559, DA039576, MH098891, MH63022, MH072567, DA027569, and NSC 2015/17/B/NZ7/02985.
Anesthesia instrument | Vetequip | 901806 |
Surgical scissors | Fine Science Tool | 14558-09 |
Surgical forceps straight tip | Fine Science Tool | 00108-11 |
Surgical forceps angled tip | Fine Science Tool | 00109-11 |
Spring scissors | Fine Science Tool | 15000-08 |
Nylon suture | Braintree Scientific | SUT-S 104 |
Capillary tubing (Micro-Renathane 0.010” x 0.005” per ft.) | Braintree Scientific | MRE01050 |
Closing suture | VWR | 95057-036 |
Isoflurane | Piramal | |
2,3,5-Triphenyltetrazolium chloride | FisherScientific | 50-121-8005 |