Summary

La indirecta neurona-astrocito Coculture Ensayo: Un<em> In Vitro</em> Puesta en marcha de la investigación detallada de las interacciones neurona-glía

Published: November 14, 2016
doi:

Summary

Este protocolo describe el co-cultivo de neuronas-astrocito indirecta para el análisis de las interacciones neurona compartimentada-glia.

Abstract

el desarrollo neuronal y la función es el requisito previo del desarrollo como en el cerebro adulto. Sin embargo, los mecanismos que subyacen a la formación altamente controlada y mantenimiento de redes neuronales complejas no se entienden por completo hasta el momento. Las preguntas abiertas relativas a las neuronas en salud y la enfermedad son diversas y que va desde la comprensión del desarrollo de base a la investigación de patologías relacionadas con el hombre, por ejemplo, la enfermedad de Alzheimer y la esquizofrenia. El análisis más detallado de las neuronas se puede realizar in vitro. Sin embargo, las neuronas son células exigentes y necesitan el apoyo adicional de los astrocitos para su supervivencia a largo plazo. Esta heterogeneidad celular está en conflicto con el objetivo de diseccionar el análisis de las neuronas y astrocitos. Presentamos aquí un ensayo de cultivo celular que permite la co-cultivo a largo plazo de las neuronas y astrocitos primarios puros, que comparten el mismo medio químicamente definido, mientras que estar físicamenteapartado. En esta configuración, las culturas sobreviven durante un máximo de cuatro semanas y el ensayo es adecuado para una diversidad de investigaciones relativas a la interacción neurona-glía.

Introduction

A lo largo de las últimas décadas, la interpretación general de la función neuroglia ha evolucionado a partir de la atribución de un apoyo meramente hacia un papel regulador activo en relación con la función neuronal 1. Debido a su impacto importante en la homeostasis cerebral en salud y enfermedad 2, los astrocitos son de especial interés para la comunidad científica. En los últimos años, una diversidad de estudios se han centrado en las interacciones neurona-glía in vivo e in vitro 3. Sin embargo, la mayoría de los sistemas de cultivo no permiten el análisis separado de los dos tipos de células y de sus respectivos secretomas.

Varios enfoques explotan el cocultivo directo de las neuronas y glía para lograr la supervivencia de larga duración y el desarrollo de la red neuronal fisiológicamente relevante 4-6. El presente protocolo alcanza los mismos objetivos, manteniendo ambos tipos de células separadas físicamente 7. En comparación con conditioned medio se aproxima a 8,9, nuestro sistema permite estudiar la comunicación bidireccional entre neuronas y astrocitos. La expresión de moléculas de señalización secretadas se puede monitorizar mientras que las células maduran en el medio compartido. Esta oportunidad es especialmente relevante, como astrocitos liberan factores solubles, tales como citoquinas, factores de crecimiento y moléculas de matriz extracelular 10,11, regulando de este modo el crecimiento neuronal y la función 7,12. Por lo tanto, se ha demostrado que la adición de trombospondina a las células ganglionares de la retina in vitro induce la formación de sinapsis 13. Sin embargo, otros factores desconocidos son necesarias para hacer sinapsis funcionales 13. Además, las moléculas liberadas por los astrocitos tienen que identificarse con el fin de comprender la base de las interacciones neurona-glía.

El cultivo de las neuronas primarias y astrocitos de ratón y de rata se ha descrito previamente 14-16. Aquí nosotrospresentar una herramienta elegante y versátil para combinar ambos tipos de células en un enfoque cocultivo indirecto. Dado que las dos culturas se separan físicamente aún compartiendo el mismo medio, el impacto de las neuronas, astrocitos y las moléculas solubles, pueden ser analizados por separado, creando así una poderosa herramienta para estudios de interacciones neurona-glía.

Protocol

Los experimentos con ratones estaban de acuerdo con la Ley Alemana y la Sociedad Alemana para la Neurociencia directrices de la cría de animales. Los comités de cuidado de los animales y la utilización de la Ruhr-Universität Bochum han concedido los permisos apropiados. 1. Preparación y cultivo de astrocitos corticales Nota: Complete estos pasos del protocolo de al menos 7 días antes de proceder a los pasos siguientes, ya que los cultivos de astrocitos deben …

Representative Results

El análisis de los cultivos neuronales a través del sistema de cocultivo indirecto es múltiple y se puede realizar en diferentes etapas de la maduración de la cultura. Debido al hecho de que las células se pueden mantener durante un máximo de 4 semanas, son posibles investigaciones a largo plazo de los cultivos. El esquema en el panel central izquierda de la Figura 1 demuestra la configuración de cocult…

Discussion

El objetivo principal del protocolo actual consiste en cultivos neuronales y los astrocitos completamente separados, mientras se mantiene en medio compartido. Por esta razón, la pureza de los cultivos obtenidos debe ser verificada en el comienzo del procedimiento. Se recomienda el uso de la tubulina específico de neuronas, o la proteína de neurofilamentos NeuN como marcadores neuronales, GFAP como marcador de los astrocitos, antígeno O4 como marcador precursor de oligodendrocitos y la proteína Iba1 para identificar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The present work was supported by the German research foundation (Deutsche Forschungsgemeinschaft DFG: GRK 736, Fa 159/22-1; the research school of the Ruhr University Bochum (GSC98/1) and the priority program SSP 1172 “Glia and Synapse”, Fa 159/11-1,2,3).

Materials

Reagents
B27 Gibco (Life Technologies) 17504-044
Cell culture grade water MilliQ
Cell culture grade water MilliQ
Cytosine-ß-D arabinofuranoside (AraC) Sigma-Aldrich C1768 CAUTION: H317, H361
DMEM Gibco (Life Technologies)  41966-029
DNAse Worthington LS002007
Gentamycin Sigma-Aldrich G1397 CAUTION: H317-334
Glucose Serva 22700
HBSS Gibco (Life Technologies) 14170-088
HEPES Gibco (Life Technologies) 15630-056
Horse serum Biochrom AG S9135
L-Cysteine Sigma-Aldrich C-2529
MEM Gibco (Life Technologies) 31095-029
Ovalbumin Sigma-Aldrich A7641 CAUTION: H334
Papain Worthington 3126
PBS self-made 
Poly-D-lysine Sigma-Aldrich P0899
Poly-L-ornithine Sigma-Aldrich P3655
Sodium pyruvate Sigma-Aldrich S8636
Trypsin-EDTA Gibco (Life Technologies) 25300054
Equipment
24 well plates Thermoscientific/Nunc 142475
24-wells plate (for the  indirect co-culture) BD Falcon 353504
Binocular Leica MZ6
Cell-culture inserts BD Falcon 353095
Centrifuge Heraeus Multifuge 3S-R
Counting Chamber Marienfeld 650010
Forceps FST Dumont (#5) 11254-20
glass cover slips (12 mm) Carl Roth (Menzel- Gläser) P231.1
Incubator Thermo Scientific Heracell 240i
Micro tube (2 ml) Sarstedt 72,691
Microscope Leica DMIL
Millex Syringe-driven filter unit Millipore SLGV013SL
Orbital shaker New Brunswick Scientific Innova 4000
Parafilm Bemis PM-996
Petri dishes (10 cm) Sarstedt 833,902
pipette (1 ml) Gilson Pipetman 1000
Sterile work bench The Baker Company Laminar Flow SterilGARD III
Surgical scissors FST Dumont 14094-11
Syringe Henry Schein 9003016
T75 flask Sarstedt 833,911,002
tube (15 ml) Sarstedt 64,554,502
Water bath GFL Water bath type 1004

References

  1. Volterra, A., Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6, 626-640 (2005).
  2. Barreto, G. E., Gonzalez, J., Torres, Y., Morales, L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res. 71, 107-113 (2011).
  3. Araque, A., Carmignoto, G., Haydon, P. G. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 63, 795-813 (2001).
  4. Dityatev, A., et al. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol. 67, 570-588 (2007).
  5. Robinette, B. L., Harrill, J. A., Mundy, W. R., Shafer, T. J. In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Front Neuroeng. 4, 1 (2011).
  6. Voigt, T., Opitz, T., de Lima, A. D. Synchronous Oscillatory Activity in Immature Cortical Network Is Driven by GABAergic Preplate Neurons. J Neurosci. 21 (22), 8895-8905 (2001).
  7. Geissler, M., Faissner, A. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays. J Neurosci Methods. 204, 262-272 (2012).
  8. Yu, C. Y., et al. Neuronal and astroglial TGFbeta-Smad3 signaling pathways differentially regulate dendrite growth and synaptogenesis. Neuromolecular Med. 16, 457-472 (2014).
  9. Yu, P., Wang, H., Katagiri, Y., Geller, H. M. An in vitro model of reactive astrogliosis and its effect on neuronal growth. Methods Mol Biol. 814, 327-340 (2012).
  10. Kucukdereli, H., et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. PNAS. 108, E440-E449 (2011).
  11. Pyka, M., Busse, C., Seidenbecher, C., Gundelfinger, E. D., Faissner, A. Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse. 65, 41-53 (2011).
  12. Navarrete, M., Araque, A. Basal synaptic transmission: astrocytes rule!. Cell. 146, 675-677 (2011).
  13. Christopherson, K. S., et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 120, 421-433 (2005).
  14. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat Protoc. 1, 2406-2415 (2006).
  15. Geissler, M., et al. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J Neurosci. 33, 7742-7755 (2013).
  16. Dzyubenko, E., Gottschling, C., Faissner, A. Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast. 2016, 5214961 (2016).
  17. McCarthy, K. D., de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 85, 890-902 (1980).
  18. Pyka, M., et al. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci. 33, 2187-2202 (2011).
  19. Eroglu, C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal. 3, 167-176 (2009).
  20. Ethell, I. M., Ethell, D. W. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res. 85, 2813-2823 (2007).
  21. Theocharidis, U., Long, K., ffrench-Constant, C., Faissner, A., Dityatev, A. l. e. x. a. n. d. e. r., Wehrle-Haller, B. e. r. n. h. a. r. d., Asla, P. i. t. k. &. #. 2. 2. 8. ;. n. e. n. . Prog Brain Res. 214, 3-28 (2014).
  22. Dityatev, A., Rusakov, D. A. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol. 21, 353-359 (2011).
  23. Ippolito, D. M., Eroglu, C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse. JoVe. , (2010).

Play Video

Cite This Article
Gottschling, C., Dzyubenko, E., Geissler, M., Faissner, A. The Indirect Neuron-astrocyte Coculture Assay: An In Vitro Set-up for the Detailed Investigation of Neuron-glia Interactions. J. Vis. Exp. (117), e54757, doi:10.3791/54757 (2016).

View Video