We describe a protocol for filtration of water samples with a filter cartridge and extraction of environmental DNA (eDNA) without having to cut open the housing to remove the filter. This protocol is developed for metabarcoding eDNA from fishes, but is also applicable to eDNA from other organisms.
Recent studies demonstrated the use of environmental DNA (eDNA) from fishes to be appropriate as a non-invasive monitoring tool. Most of these studies employed disk fiber filters to collect eDNA from water samples, although a number of microbial studies in aquatic environments have employed filter cartridges, because the cartridge has the advantage of accommodating large water volumes and of overall ease of use. Here we provide a protocol for filtration of water samples using the filter cartridge and extraction of eDNA from the filter without having to cut open the housing. The main portions of this protocol consists of 1) filtration of water samples (water volumes ≤4 L or >4 L); (2) extraction of DNA on the filter using a roller shaker placed in a preheated incubator; and (3) purification of DNA using a commercial kit. With the use of this and previously-used protocols, we perform metabarcoding analysis of eDNA taken from a huge aquarium tank (7,500 m3) with known species composition, and show the number of detected species per library from the two protocols as the representative results. This protocol has been developed for metabarcoding eDNA from fishes, but is also applicable to eDNA from other organisms.
DNA Ambiental (Edna) em ambientes aquáticos refere-se a material genético encontrado na coluna de água. Estudos recentes demonstraram a utilidade de Edna para a detecção de peixes de vários ambientes aquáticos, incluindo lagoas 1-3, 4-8 rios, córregos 9, e água do mar 10-14. A maioria destes estudos focados em detecção de um único ou poucos invasiva 1,4-6,8,14 e raras ou ameaçadas espécies de 3,9, enquanto alguns estudos recentes tentativa de detecção simultânea de múltiplas espécies em comunidades de peixes locais 7,9, 12,13,15 e mesocosmos 11,12.
A última abordagem é chamada de "metabarcoding" e Edna metabarcoding utiliza um ou vários conjuntos de primers de PCR para coamplify uma região do gene através de amostras taxonomicamente diversas. Isto é seguido por uma preparação da biblioteca com indexação e adição do adaptador, e as bibliotecas indexados são analisados por uma sequenciação de alto rendimento paraleloplataforma. Recentemente Miya et al. 12 desenvolveram iniciadores de PCR universais para metabarcoding Edna de peixes (chamados "MiFish"). Os primers MiFish alvo uma região hipervariável do gene 12S rRNA mitocondrial (163-185 pb), que contém informações suficientes para identificar os peixes a família taxonômica, gênero e espécie, exceto para alguns dos congéneres estreitamente relacionadas. Com o uso desses iniciadores em Edna metabarcoding, Miya et al. 12 detectou mais de 230 espécies marinhas subtropicais de aquários com conhecidos de composição de espécies e os recifes de coral perto do aquário.
Além de otimizar o protocolo metabarcoding para acomodar a água do mar natural, com diferentes níveis de concentração de Edna de peixes, temos notado que os primers MiFish ocasionalmente falhou para amplificar a região alvo para a preparação da biblioteca subsequente. Uma das razões mais prováveis para esta amplificação PCR vencida é a falta de quantidades adequadas de teADN mplate contida em pequenos volumes de água filtrada (isto é, 1-2 G). Embora a concentração Edna de um grupo taxonômico específico é desconhecido antes da amplificação, filtragem de grandes volumes de água (> 1-2 L) seria um meio simples e eficaz para recolher mais Edna dos ambientes aquáticos com abundância de peixes raros e de biomassa, tal como -mar aberto e de profundidade ecossistemas.
Em relação a filtros de fibra de disco convencionalmente utilizados em uma série de pesquisas EdNA peixe 16, os cartuchos de filtro têm a vantagem de acomodar maiores volumes de água antes de entupimento 17. Na verdade, um estudo recente mostrou grande volume (> 20 L) filtração de amostras de água do mar costeiras usando cartuchos de filtro 18. Além disso, eles são embalados individualmente e estéril, e vários passos do fluxo de trabalho experimental pode ser realizada no invólucro do filtro, reduzindo assim a probabilidade de contaminação a partir do laboratório de 19. O últimoO recurso é fundamental para Edna metabarcoding, em que o risco de contaminação permanece entre os maiores experimental desafia 20,21. Apesar destas vantagens técnicas de cartuchos de filtro, que não tem sido usado em estudos EdNA de peixes com duas excepções 8,15.
Aqui nós fornecemos um protocolo para a filtração de amostras de água com o cartucho de filtro e a extracção de EdNA a partir do seu filtro sem ter que cortar abrir o invólucro. Nós também fornecemos dois sistemas de filtração de água alternativas, dependendo dos volumes de água (≤4 L ou> 4 L). Para comparar o desempenho do protocolo recém-desenvolvido e um protocolo previamente utilizados através de um filtro de fibra de vidro em nosso grupo de pesquisa 12,14,22,23, eu executo Edna metabarcoding análise da água do mar a partir de um tanque do aquário enorme (7.500 m 3 ) com a composição de espécies conhecidas, e mostrar o número de espécies detectadas derivados dos dois protocolos como resultados representativos. Este protocolo hcomo foi desenvolvido para metabarcoding EdNA de peixes, mas também é aplicável a EdNA de outros organismos.
Em muitos estudos metabarcoding utilizando amostras ambientais, tais como a água eo solo, tratamento pós-filtração do cartucho de filtro é geralmente da seguinte forma 24,25: 1) o corte aberto ou fissuras da caixa com ferramentas manuais (cortador de tubos ou um alicate); 2) remoção do filtro a partir do cartucho; e 3) o filtro de corte em pedaços pequenos com uma lâmina de barbear para a extracção do ADN. Para evitar tais pesado e procedimentos que são propensas à contaminação no laboratório …
The authors have nothing to disclose.
This study was supported as basic research by CREST from the Japan Science and Technology Agency (JST) and by grants from JSPS/MEXT KAKENHI (Number 26291083) and the Canon Foundation to M.M. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Mesh panel | Iris Ohyama | MPP-3060-BE | |
Metal prong | Iris Ohyama | MR12F | |
Stand for the mesh panel | No brand | 4184-9507 | available from Amazon Japan |
1-L plastic bag with screw cap | Yanagi | DP16-TN1000 | |
Male luer-lock connector | ISIS | 11620 | |
10-mL pipette tip | Eppendorf | 0030 000.765 | |
10-L book bottle with valve | As One | 1-2169-01 | |
Sterivex-HV filter | Millipore | SVHVL10RC | denoted as "filter cartridge" throughout the ms and used in the protocol |
Male luer fitting | As One | 1-7379-04 | |
Female luer fitting | As One | 5-1043-14 | |
Inlet luer cap | ISIS | VRMP6 | |
Outlet luer cap | ISIS | VRFP6 | |
High vacuum tubing | As One | 6-590-01 | |
Vacuum connector | As One | 6-663-02 | |
Silicone stopper | As One | 1-7650-07 | |
Manifold | As One | 2-258-01 | |
Aspirator-GAS-1 | As One | 1-7483-21 | |
DNeasy Blood & Tissue Kit (250) | Qiagen | 69506 | |
PowerWater Sterivex DNA Isolation Kit | MO BIO | 14600-50-NF | denoted as "optional kit" in the ms |
Tabletop Centrifuge | Kubota | Model 4000 | Maximum speed 6,000 rpm |
Fixed-angle rotor | Kubota | AT-508C | |
Adaptor for a 15 mL conical tube | Kubota | 055-1280 | |
RNAlater Stabilization Solution | Thermo Fisher Scientific | AM7020 | |
Parafilm | PM992 | denoted as "self-sealing film" |