Summary

La fabricación de la luz blanca de emisores de celdas electroquímicas con emisión estable de exciplejos

Published: November 15, 2016
doi:

Summary

The authors present a method for fabricating stable white-light-emitting electrochemical cells utilizing emission from exciplexes formed between a blue-emitting fluorene polymer and aromatic amines.

Abstract

Los autores presentan un método para la fabricación estable de emisión de luz blanca a partir de células electroquímicas emisores de luz de polímero (plecs) que tiene una capa activa que consiste en poli-azul fluorescente (9,9-di-n-dodecylfluorenyl-2,7-diilo) ( PFD) y moléculas trifenilamina π-conjugados. Esta emisión de luz blanca se origina a partir exciplejos formados entre PFD y aminas en estados excitados electrónicamente. Un dispositivo que contiene PFD, 4,4 ', 4' '- tris [2-naftilo (fenil) amino] trifenilamina (2-TNATA), poli (óxido de etileno) y K 2 CF 3 SO 3 mostró emisión de luz blanca con Commission Internationale de l'Éclairage (CIE) coordenadas (0,33, 0,43) y un índice de rendimiento de color (CRI) de Ra = 73 a una tensión aplicada de las mediciones de voltaje constante 3,5 V. mostró que la CIE coordenadas (0,27, 0,37), Ra de 67, y el color emisión observada inmediatamente después de la aplicación de una tensión de 5 V fueron casi sin cambios y estable después de300 sec.

Introduction

Research and development of polymer light-emitting electrochemical cells (PLECs) have expanded in recent years.1-15 PLECs are similar to organic light-emitting diodes (OLEDs) in that both are surface emitting organic devices and are expected to find their way into future lighting applications. OLEDs are already on the market, but the cost is still high, one reason being that OLEDs need a complicated device structure with multiple layers. In contrast, PLECs have a very simple device structure which consists of a single active layer (emitting layer) between a pair of electrodes. This means that PLECs are suited to mass production processes such as roll-to-roll printing and coating.

A PLEC has an active layer consisting of a fluorescent π-conjugated polymer (FCP). The FCP can be electrochemically doped with a polymer electrolyte (a mixture of an ion conducting polymer and a salt). The FCP is p-doped on the anode side and n-doped on the cathode side during operation, and generates excitons which emit light between the p- and n-doped regions. Therefore, the emission color reflects the exciton emission (=fluorescence) wavelength of the FCP.

Stable white light emission is important for lighting applications, and color mixing techniques which employ two or more emitters have been widely used to achieve this.10-14 Recently, we presented a different approach for obtaining stable white light emission, using an active layer which contains blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated aromatic amines15. This white light emission comes from exciplexes formed between PFD and amine molecules in excited states. Exciplex emission has a broader spectrum compared to the exciton emission from the PDF and/or amines, which gives it a color close to that of natural light. This translates to a higher color rendering index (CRI), which is preferable for lighting applications.

In this article, the authors describe the procedure used to fabricate the exciplex based LECs and show the stability of their white light emission.

Protocol

1. Preparación de soluciones capa activa Solución de la capa activa de los dispositivos de PFD amina dopado NOTA: El PFD, 4,4 ', 4' '- tris [2-naftil (fenil) amino] trifenilamina (2-TNATA), 9,9-dimetil-N, N' di (1-naftil) – N , N 'difenil-9H-fluoreno-2,7-diamina (DMFL-NPB), poli (óxido de etileno) (PEO), se utilizaron tal como se recibieron. El trifluorometanosulfonato de potasio (K 2 CF 3 SO 3) se secó a vacío…

Representative Results

La electroluminiscencia (EL) espectros se utiliza para calcular las coordenadas CIE y los valores de CRI (Figuras 2, 4, 5). Se recogieron las imágenes fotográficas de los dispositivos emisores para verificar la blancura de la emisión (Figura 3). Los espectros de EL de los dispositivos de PFD amina dopado y el dispositivo de PFD no dopado se muestra en la Figura 2. El dispos…

Discussion

El LEC tiene una que contiene PFD hidrófobo y aminas aromáticas, y óxido de polietileno hidrófilo y KCF 3 SO 3 capa activa. Debido a que estos materiales tienen muy diferentes solubilidades, cuidadosa preparación de la solución de recubrimiento por centrifugación es crítico para evitar la solvatación incompletos. Cada uno debe disolverse primero por separado y completamente en disolventes con suficiente capacidad de solvatación, a continuación, las soluciones se mezclan entre sí para fo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado en parte por una subvención-en-Ayudas a la Investigación Científica (Nº 24225003). Este trabajo fue apoyado financieramente por el JX Nippon Oil & Energy Corporation.

Materials

Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) Aldrich 571660
4,4’,4’’-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) Aldrich 768669
9,9-Dimethyl-N,N’-di(1-naphthyl)-N,N’-diphenyl-9H-fluorene-2,7-diamine (DMFL-NPB) Aldrich
Poly(ethylene oxide) (PEO) Aldrich 182028
Potassium tirifluoromethansulfonate (KCF3SO3) Aldrich 422843 dried under vacuum at 200 °C for 2 hr prior to use
Chloroform Kanto Chemical Co. 08097-25 dehydrated
Cyclohexanone Kanto Chemical Co. 07555-00
SCAT 20-X (detergent) Daiichi Kogyo Seiyaku diluted with water
Acetone Kanto Chemical Co. 01866-25 Electronic grage
2-propanol Kanto Chemical Co. 32439-75 Electronic grage
13mm GD/X Disposable Filter Device PVDF Filter Media, Polypropylene Housing Whatman 6872-1304
UV/O3 Treating Unit SEN Lights Co.  SSP16-110
Spectral Photo Detector Otsuka Electronics MCPD 9800
Voltage Current Source Monitor  ADCMT 6241A 
Evaporation Mask  Tokyo Process Service Co., Ltd. NA The evaporation mask was wet-etched to create openings for patterned deposition of aluminum. The size of the mask is 100 mm x 100 mm x 0.2 mm-thick.

References

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A. J. Polymer light-emitting electrochemical cells. Science. 269 (5227), 1086-1088 (1995).
  2. Sun, Q., Li, Y., Pei, Q. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3 (2), 211-224 (2007).
  3. Meier, S. B., et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today. 17 (5), 217-223 (2014).
  4. Edman, L., et al. Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance. J. Appl. Phys. 98 (4), 044502 (2005).
  5. Fang, J., Matyba, P., Edman, L. The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 19 (16), 2671-2676 (2009).
  6. Yu, Z., et al. Stabilizing the Dynamic p− i− n Junction in Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. Lett. 2 (5), 367-372 (2011).
  7. Sandström, A., Dam, H. F., Krebs, F. C., Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1002 (2012).
  8. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  9. Yang, Y., Pei, Q. Efficient blue-green and white light-emitting electrochemical cells based on poly 9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl. J. Appl. Phys. 81 (7), 3294-3298 (1997).
  10. Tang, S., Buchholz, H. A., Edman, L. White Light from a Light-Emitting Electrochemical Cell: Controlling the Energy-Transfer in a Conjugated Polymer/Triplet-Emitter Blend. ACS Appl. Mater. Iterfaces. 7 (46), 25955-25960 (2015).
  11. Nishikitani, Y., Takizawa, D., Nishide, H., Uchida, S., Nishimura, S. White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent π-Conjugated Polymers Based on Concepts of Band-Structure Engineering. J. Phys. Chem. C. 119 (52), 28701-28710 (2015).
  12. Sun, M., Zhong, C., Li, F., Cao, Y., Pei, Q. A Fluorene− Oxadiazole Copolymer for White Light-Emitting Electrochemical Cells. Macromolecules. 43 (4), 1714-1718 (2010).
  13. Tang, S., Pan, J., Buchholz, H., Edman, L. White Light-Emitting Electrochemical Cell. ACS Appl. Mater. Interfaces. 3 (9), 3384-3388 (2011).
  14. Tang, S., Pan, J., Buchholz, H. A., Edman, L. White light from a single-emitter light-emitting electrochemical cell. J. Am. Chem. Soc. 135 (9), 3647-3652 (2013).
  15. Nishikitani, Y., et al. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules. J. Appl. Phys. 118 (22), 225501 (2015).
  16. Tang, S., Mindemark, J., Araujo, C. M. G., Brandell, D., Edman, L. Identifying Key Properties of Electrolytes for Light-Emitting Electrochemical Cells. Chem. Mater. 26 (17), 5083-5088 (2014).

Play Video

Cite This Article
Uchida, S., Takizawa, D., Ikeda, S., Takeuchi, H., Nishimura, S., Nishide, H., Nishikitani, Y. Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes. J. Vis. Exp. (117), e54628, doi:10.3791/54628 (2016).

View Video