Summary

Fabbricazione di White Light-emitting cellule elettrochimiche con emissione stabile da ecciplessi

Published: November 15, 2016
doi:

Summary

The authors present a method for fabricating stable white-light-emitting electrochemical cells utilizing emission from exciplexes formed between a blue-emitting fluorene polymer and aromatic amines.

Abstract

Gli autori presentano un approccio per fabbricare stabile emissione luce bianca polimero luminescenti celle elettrochimiche (PLECS) avente uno strato attivo che consiste di poli blue-fluorescente (9,9-di-n-dodecylfluorenyl-2,7-diile) ( PFD) e molecole trifenilamina π-coniugati. Questa emissione di luce bianca proviene da ecciplessi formati tra PFD e ammine in stati elettronici eccitati. Un dispositivo contenente PFD, 4,4 ', 4' '- tris [2-naftil (fenil) ammino] trifenilamina (2-TNATA), poli (ossido di etilene) e K 2 CF 3 SO 3 mostrato emissione di luce bianca con Commission Internationale de l'éclairage (CIE) coordinate di (0,33, 0,43) e un Indice di resa cromatica (CRI) di Ra = 73 ad una tensione applicata di 3,5 V. misure di tensione costante ha dimostrato che coordina il CIE di (0,27, 0,37), Ra di 67, e il colore di emissione osservato immediatamente dopo l'applicazione di una tensione di 5 V erano quasi immutata e stabile dopo300 sec.

Introduction

Research and development of polymer light-emitting electrochemical cells (PLECs) have expanded in recent years.1-15 PLECs are similar to organic light-emitting diodes (OLEDs) in that both are surface emitting organic devices and are expected to find their way into future lighting applications. OLEDs are already on the market, but the cost is still high, one reason being that OLEDs need a complicated device structure with multiple layers. In contrast, PLECs have a very simple device structure which consists of a single active layer (emitting layer) between a pair of electrodes. This means that PLECs are suited to mass production processes such as roll-to-roll printing and coating.

A PLEC has an active layer consisting of a fluorescent π-conjugated polymer (FCP). The FCP can be electrochemically doped with a polymer electrolyte (a mixture of an ion conducting polymer and a salt). The FCP is p-doped on the anode side and n-doped on the cathode side during operation, and generates excitons which emit light between the p- and n-doped regions. Therefore, the emission color reflects the exciton emission (=fluorescence) wavelength of the FCP.

Stable white light emission is important for lighting applications, and color mixing techniques which employ two or more emitters have been widely used to achieve this.10-14 Recently, we presented a different approach for obtaining stable white light emission, using an active layer which contains blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated aromatic amines15. This white light emission comes from exciplexes formed between PFD and amine molecules in excited states. Exciplex emission has a broader spectrum compared to the exciton emission from the PDF and/or amines, which gives it a color close to that of natural light. This translates to a higher color rendering index (CRI), which is preferable for lighting applications.

In this article, the authors describe the procedure used to fabricate the exciplex based LECs and show the stability of their white light emission.

Protocol

1. preparazione di soluzioni strato attivo Soluzione livello attivo per i dispositivi PFD ammine drogato NOTA: Il PFD, 4,4 ', 4' '- tris [2-naftil (fenil) ammino] trifenilamina (2-TNATA), 9,9-dimetil- N, N' -di (1-naftil) – N , N 'difenil-9H-fluorene-2,7-diammina (DMFL-NPB), poli (ossido di etilene) (PEO), sono stati utilizzati come ricevuti. Il trifluorometansolfonato di potassio (K 2 CF 3 SO 3) è stato essiccato …

Representative Results

Il elettroluminescenza (EL) spettri sono stati usati per calcolare le coordinate CIE e valori CRI (Figure 2, 4, 5). Le immagini fotografiche dei dispositivi che emettono sono stati raccolti per verificare la bianchezza delle emissioni (Figura 3). Gli spettri EL dei dispositivi PFD amminici drogato e non drogato dispositivo PFD sono mostrati in Figura 2. Il dispositivo PFD non …

Discussion

Il LEC ha uno strato attivo contenente PFD idrofoba e ammine aromatiche, e ossido di polietilene idrofila e KCF 3 SO 3. Poiché questi materiali hanno molto diverse solubilità, accurata preparazione della soluzione di spin coating è fondamentale per evitare solvatazione incompleta. Ciascuno deve essere prima sciolti separatamente e completamente in solventi con capacità di solvatazione sufficiente, allora le soluzioni sono mescolati insieme per formare una miscela uniforme. Bilanciare le emissio…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato parzialmente supportato da un Grant-in-Aid per la ricerca scientifica (n ° 24.225.003). Questo lavoro è stato sostenuto finanziariamente dalla JX Nippon Oil & Energy Corporation.

Materials

Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) Aldrich 571660
4,4’,4’’-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) Aldrich 768669
9,9-Dimethyl-N,N’-di(1-naphthyl)-N,N’-diphenyl-9H-fluorene-2,7-diamine (DMFL-NPB) Aldrich
Poly(ethylene oxide) (PEO) Aldrich 182028
Potassium tirifluoromethansulfonate (KCF3SO3) Aldrich 422843 dried under vacuum at 200 °C for 2 hr prior to use
Chloroform Kanto Chemical Co. 08097-25 dehydrated
Cyclohexanone Kanto Chemical Co. 07555-00
SCAT 20-X (detergent) Daiichi Kogyo Seiyaku diluted with water
Acetone Kanto Chemical Co. 01866-25 Electronic grage
2-propanol Kanto Chemical Co. 32439-75 Electronic grage
13mm GD/X Disposable Filter Device PVDF Filter Media, Polypropylene Housing Whatman 6872-1304
UV/O3 Treating Unit SEN Lights Co.  SSP16-110
Spectral Photo Detector Otsuka Electronics MCPD 9800
Voltage Current Source Monitor  ADCMT 6241A 
Evaporation Mask  Tokyo Process Service Co., Ltd. NA The evaporation mask was wet-etched to create openings for patterned deposition of aluminum. The size of the mask is 100 mm x 100 mm x 0.2 mm-thick.

References

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A. J. Polymer light-emitting electrochemical cells. Science. 269 (5227), 1086-1088 (1995).
  2. Sun, Q., Li, Y., Pei, Q. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3 (2), 211-224 (2007).
  3. Meier, S. B., et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today. 17 (5), 217-223 (2014).
  4. Edman, L., et al. Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance. J. Appl. Phys. 98 (4), 044502 (2005).
  5. Fang, J., Matyba, P., Edman, L. The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 19 (16), 2671-2676 (2009).
  6. Yu, Z., et al. Stabilizing the Dynamic p− i− n Junction in Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. Lett. 2 (5), 367-372 (2011).
  7. Sandström, A., Dam, H. F., Krebs, F. C., Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1002 (2012).
  8. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  9. Yang, Y., Pei, Q. Efficient blue-green and white light-emitting electrochemical cells based on poly 9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl. J. Appl. Phys. 81 (7), 3294-3298 (1997).
  10. Tang, S., Buchholz, H. A., Edman, L. White Light from a Light-Emitting Electrochemical Cell: Controlling the Energy-Transfer in a Conjugated Polymer/Triplet-Emitter Blend. ACS Appl. Mater. Iterfaces. 7 (46), 25955-25960 (2015).
  11. Nishikitani, Y., Takizawa, D., Nishide, H., Uchida, S., Nishimura, S. White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent π-Conjugated Polymers Based on Concepts of Band-Structure Engineering. J. Phys. Chem. C. 119 (52), 28701-28710 (2015).
  12. Sun, M., Zhong, C., Li, F., Cao, Y., Pei, Q. A Fluorene− Oxadiazole Copolymer for White Light-Emitting Electrochemical Cells. Macromolecules. 43 (4), 1714-1718 (2010).
  13. Tang, S., Pan, J., Buchholz, H., Edman, L. White Light-Emitting Electrochemical Cell. ACS Appl. Mater. Interfaces. 3 (9), 3384-3388 (2011).
  14. Tang, S., Pan, J., Buchholz, H. A., Edman, L. White light from a single-emitter light-emitting electrochemical cell. J. Am. Chem. Soc. 135 (9), 3647-3652 (2013).
  15. Nishikitani, Y., et al. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules. J. Appl. Phys. 118 (22), 225501 (2015).
  16. Tang, S., Mindemark, J., Araujo, C. M. G., Brandell, D., Edman, L. Identifying Key Properties of Electrolytes for Light-Emitting Electrochemical Cells. Chem. Mater. 26 (17), 5083-5088 (2014).

Play Video

Cite This Article
Uchida, S., Takizawa, D., Ikeda, S., Takeuchi, H., Nishimura, S., Nishide, H., Nishikitani, Y. Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes. J. Vis. Exp. (117), e54628, doi:10.3791/54628 (2016).

View Video