Эта статья представляет собой устройство импеданса на основе для обнаружения скорости испарения растворов. Он предлагает явные преимущества по сравнению с традиционным подходом потери веса: быстрый отклик, обнаружение высокой чувствительности, небольшое требование образца, многократные измерения образца, и простой демонтаж для очистки и повторного использования целей.
В данной статье описывается метод новой платформы на основе импеданса для обнаружения скорости испарения. Модель соединения гиалуроновой кислоты использовали здесь для демонстрационных целей. Были проведены несколько тестов упаривания на модели соединения в качестве увлажнителя с различными концентрациями в растворах для целей сравнения. Традиционный подход потеря веса известен как самый простой, но много времени, методика измерений для определения скорости испарения. Тем не менее, явный недостаток состоит в том, что большой объем образца требуется и множественные образцы тестов не могут быть проведены одновременно. Впервые в литературе, электрический чип Чувствительный импеданса успешно применяется к исследованию испарения в режиме реального времени в режиме разделения времени, непрерывным и автоматическим способом. К тому же, всего лишь 0,5 мл испытуемых образцов необходим в этом устройстве импеданса на основе, и большое изменение импеданса проявляется среди различных разбавленным Solutiдополнения. Предложенная система высокой чувствительности и датчиков импеданса быстрого отклика оказывается опережать обычный потеря веса подход с точки зрения обнаружения скорости испарения.
Испарение представляет собой тип испарении жидкости и происходит вдоль границы раздела газ-жидкость коллективного водоеме. Молекулы воды вблизи поверхности становятся способными вырваться из жидкости в результате столкновения молекул воды. Скорость испарения является важным ключевым фактором в процессе испарения. Как правило, этот баланс или объемная труба 1-3 широко используемый для обнаружения выпаривание растворов. Тем не менее, он занимает много времени, чтобы измерить скорость испарения из-за точности ограничение баланса или объемной трубки. По этой причине прибор реагирует и высокой чувствительности должны быть разработаны, чтобы исследовать в детали процесса испарения.
Электрохимический импеданс – спектроскопии (EIS) является быстрый ответ, чувствительные и эффективные экспериментальные средства с точки зрения обнаружения импеданса в месте для электрохимической характеризации системы 4. Поэтому EIS могут быть применены в различных тьфуLDS, таких , как недавние исследования на клеточном поведении 5, биоаналитической зондирования 6-7, электролиза 8, 9 проводящих полимеров и электрохимической экстракции 10. Даже если системы EIS была успешно применена в самых разных дисциплинах, существуют чрезвычайно малое количество публикаций о его применении к исследованию испарения.
Гиалуроновая кислота, высокомолекулярным полисахаридом с сильным связывающего воду потенциалом, является хорошо известным Увлажнитель для косметических применений. Одна молекула гиалуроновой кислоты может связать до 500 молекул воды 11 и достигают 1000 раз свой первоначальный объем 12. Чрезвычайно небольшое количество гиалуроновой кислоты может обладать функцией увлажнения 13-14. Из – за высокой удержания влаги, гиалуроновая кислота стала важным компонентом косметических увлажняющими продукции с высокой коммерческой ценностью во всем мире 15.
Tего исследование представляет метод устройства романа импеданса на основе характеризующуюся высокой скорости обнаружения, небольшое требование к объему образца, а также несколько измерений образцов 16-19. Она представлена с акцентом на относительном сравнении скорости испарения между растворами как способ подтвердить превосходство инновационного механизма обнаружения по сравнению с обычным весом способом.
Важным шагом для измерения испарения в этом обнаружения импеданса на основе является подготовка испытуемых растворов. Деионизированная вода не может быть использована из-за его огромного импеданса. Вместо того, чтобы, водопроводная вода, содержащая проводящие ионы, ис?…
The authors have nothing to disclose.
Эта работа была организована Министерством науки и техники, Тайвань, под номерами грантов НАИБОЛЕЕ 104-2221-E-241-001-MY3 и МОСТ 105-2627-B-005-002.
95 % ethanol | Echo Chemical Co., Ltd., Miaoli, Taiwan | 484000001103C-00EC | |
Acetone | Avantor Performance Materials Inc., Center Valley, PA, USA | JTB-9005-68 | |
Development solution | Kemitek Industrial Crop., Hsinchu, Taiwan | 12F01031 | KTD-1 |
Etching solution | eSolv Technology Co., Taipei, Taiwan | EG-462 | |
Hyaluronic acid | Shandong Freda Biopharm Co., Ltd., Jinan, China | 1010212 | Molecular weight 980k, Cosmetic Grade |
Photoresist solution | AZ Electronic Materials Taiwan Co., Ltd., Hsinchu, Taiwan | 65101M19 | AZ6112 |
8-well silicone array | Greiner bio-one Inc., Frickenhausen, Baden-Württemberg, Germany | FlexiPERM | |
ITO glass | GemTech Optoelectronics Co., Taoyuan, Taiwan | ||
Vial | Sigma-Aldrich Co. LLC., St. Louis, MO, USA | 854190 | |
Film photomask | Taiwan Mesh Co., Ltd, Taoyuan, Taiwan | ||
Lock-in amplifier | Stanford Research Systems, Inc., Palo Alto, CA, USA | SR830 | |
Switch relay | Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan | ||
Electronic balance machine | Precisa Co., Dietikon, Switzerland | XS225A |