The integration of conductive nanoparticles, such as graphene nanoplatelets, into glass fiber composite materials creates an intrinsic electrical network susceptible to strain. Here, different methods to obtain strain sensors based on the addition of graphene nanoplatelets into the epoxy matrix or as a coating on glass fabrics are proposed.
The electrical response of NH2-functionalized graphene nanoplatelets composite materials under strain was studied. Two different manufacturing methods are proposed to create the electrical network in this work: (a) the incorporation of the nanoplatelets into the epoxy matrix and (b) the coating of the glass fabric with a sizing filled with the same nanoplatelets. Both types of multiscale composite materials, with an in-plane electrical conductivity of ~10-3 S/m, showed an exponential growth of the electrical resistance as the strain increases due to distancing between adjacent functionalized graphene nanoplatelets and contact loss between overlying ones. The sensitivity of the materials analyzed during this research, using the described procedures, has been shown to be higher than commercially available strain gauges. The proposed procedures for self-sensing of the structural composite material would facilitate the structural health monitoring of components in difficult to access emplacements such as offshore wind power farms. Although the sensitivity of the multiscale composite materials was considerably higher than the sensitivity of metallic foils used as strain gauges, the value reached with NH2 functionalized graphene nanoplatelets coated fabrics was nearly an order of magnitude superior. This result elucidated their potential to be used as smart fabrics to monitor human movements such as bending of fingers or knees. By using the proposed method, the smart fabric could immediately detect the bending and recover instantly. This fact permits precise monitoring of the time of bending as well as the degree of bending.
Structural health monitoring (SHM) has become increasingly important because of the need to know the remaining life of structures1-3. Nowadays, difficult to access locations, such as offshore wind plants, lead to higher risks in maintenance operations, as well as greater costs2-4. Self-sensing materials constitute one of the possibilities in the field of SHM due to their ability of self-monitoring strain and damage5.
In the case of wind turbines, blades are generally manufactured in glass fiber/epoxy composite materials, which are electrically insulators. In order to confer self-sensing properties to this composite material, an intrinsic electrical network susceptible to strain and damage needs to be created. During the last few years, the incorporation of conductive nanoparticles such as silver nanowires6,7, carbon nanotubes (CNTs)8-10, and graphene nanoplatelets (GNPs)11-13 has been studied to create this electrical network. These nanoparticles can be incorporated into the system as filler into the polymer matrix or by coating the glass fiber fabric14. These materials can be also applied to other industrial fields, i.e., aerospace, automotive and civil engineering5, and coated fabrics can be used as smart materials in biomechanical applications7,15.
Piezoresistivity of these sensors is achieved by three different contributions. The first contribution is the intrinsic piezoresistivity of the nanoparticles; a strain of the structure changes the electrical conductivity of the nanoparticles. However, the main contributions are changes in tunnel electrical resistance, due to modifications in distances between adjacent nanoparticles, and electrical contact resistance, because of variations in the contact area between overlying ones9. This piezoresistivity is higher when 2D nanoparticles are used as a nanofiller compared to 1D nanoparticles because the electrical network presents a higher susceptibility to geometrical changes and discontinuities, usually one order of magnitude superior16.
Due to the 2D atomic character17 and the high electrical conductivity18,19, graphene nanoplatelets have been selected in this work as the nano-reinforcer of multiscale composite materials in order to obtain self-sensors with enhanced sensitivity. Two different ways to incorporate the GNPs into the composite material are studied in order to elucidate possible differences in sensing mechanisms and sensitivity.
Self-sensor properties of nanoreinforced composite materials are due to the electrical network created by the f-GNPs through the epoxy matrix and along the glass fibers, which is modified when strain is induced. Dispersion of the f-GNPs is then crucial because the electrical behavior of the sensors strongly depends on the microstructure of the material. Here, we present an optimized procedure to achieve a good dispersion of the GNPs into the epoxy matrix and to avoid wrinkling of the nanoparticles, which causes the detri…
The authors have nothing to disclose.
The authors would like to acknowledge the Ministerio de Economía y Competitividad of Spain Government (Project MAT2013-46695-C3-1-R) and Comunidad de Madrid Government (P2013/MIT-2862).
Graphene Nanoplatelets | XGScience | M25 | NA |
Epoxy resin | Huntsman | Araldite LY556 | NA |
XB3473 | NA | ||
Probe sonication | Hielscher | UP400S | NA |
Three roll mill | Exakt | Exakt 80E (Exakt GmbH) | NA |
Glass fiber fabric | Hexcel | HexForce ® 01031 1000 TF970 E UD 4H | NA |
Hot plate press | Fontijne | Fontijne LabEcon300 | NA |
Sizing | Nanocyl | SizicylTM | NA |
Multimeter | Alava Ingenieros | Agilent 34410A | NA |
Strain Gauges | Vishay | Micro-Measurement (MM®) CEA-06-187UW-120 | NA |
Mechanical tests machine | Zwick | Zwick/Roell 100 kN | NA |
Conductive silver paint | Monocomp | 16062 – PELCO® Conductive Silver Paint | NA |