Summary

从细胞使用寡核苷酸定向洗脱同源RNA-蛋白质复合物的隔离

Published: January 16, 2017
doi:

Summary

This manuscript describes an approach to isolate select cognate RNPs formed in eukaryotic cells via a specific oligonucleotide-directed enrichment. We demonstrate the applicability of this approach by isolating a cognate RNP bound to the retroviral 5′ untranslated region that is composed of DHX9/RNA helicase A.

Abstract

Ribonucleoprotein particles direct the biogenesis and post-transcriptional regulation of all mRNAs through distinct combinations of RNA binding proteins. They are composed of position-dependent, cis-acting RNA elements and unique combinations of RNA binding proteins. Defining the composition of a specific RNP is essential to achieving a fundamental understanding of gene regulation. The isolation of a select RNP is akin to finding a needle in a haystack. Here, we demonstrate an approach to isolate RNPs associated at the 5′ untranslated region of a select mRNA in asynchronous, transfected cells. This cognate RNP has been demonstrated to be necessary for the translation of select viruses and cellular stress-response genes.

The demonstrated RNA-protein co-precipitation protocol is suitable for the downstream analysis of protein components through proteomic analyses, immunoblots, or suitable biochemical identification assays. This experimental protocol demonstrates that DHX9/RNA helicase A is enriched at the 5′ terminus of cognate retroviral RNA and provides preliminary information for the identification of its association with cell stress-associated huR and junD cognate mRNAs.

Introduction

转录后基因表达被精确调节,以在细胞核中的DNA的转录开始。通过RNA结合蛋白(限制性商业惯例)控制,基因生物合成及代谢发生在高度动态的核糖核蛋白颗粒(体RNP),其联营公司及RNA代谢1-3的进展过程中与底物前体mRNA的解离。在RNP部件的动态变化影响的mRNA的转录后命运和初级成绩单,它们的核运输和定位,它们作为mRNA翻译模板活动,和成熟的mRNA的最终成交的处理过程中提供质量保证。

许多蛋白质由于其保守的氨基酸结构域,包括RNA识别基序(RRM)的指定为限制性商业惯例中,双链RNA结合结构域(RBD),和碱性残基的延伸( 例如,精氨酸,赖氨酸,和甘氨酸) 4。限制性商业惯例通常是通过免疫策略分离和筛选,以确定其同源的RNA。某些限制性商业惯例共调节预的mRNA即在功能上相关的,被指定为RNA的调节子5-8。这些限制性商业惯例,其同源的mRNA,有时非编码RNA,形成催化的RNP在组成而改变;其独特之处是由于相关因素的各种组合,以及以时间顺序,位置,以及它们之间的相互作用9的持续时间。

RNA免疫沉淀(RIP)是一个强大的技术来隔离细胞的RNP,并确定使用序列分析10-13相关的成绩单。从候选移动到全基因组筛选是通过RIP与微阵列分析14或高通量测序(RNA测序)15组合是可行的。同样地,共沉淀的蛋白质可通过质谱法鉴定,如果它们足够丰富和可分离来自共沉淀的抗体16,17。在这里,我们解决了分离从培养的人类细胞的特定的同源RNA的RNP部件的方法,虽然该方法是可改变的植物细胞,真菌,病毒和细菌的可溶性裂解物。该材料的下游分析包括候选识别和验证通过免疫印迹,质谱法,生化酶促测定法,RT-qPCR的,微阵列,和RNA测序,如总结于图1。

定的RNP在在转录后水平控制基因表达的基本作用,在组分限制性商业惯例或它们的可访问的表达的改变,以同源的RNA可能是有害的细胞,并与几种类型的疾病,包括神经系统疾病18相关联。 DHX9 / RNA解旋酶A(RHA)是必要的细胞和逆转录病毒起源6选定的mRNA的翻译。这些同源的RNA具有内结构相关的顺式作用元件的5'端非编码区,其被指定为转录后控制元件(PCE)19。 RHA-PCE活性是必需的许多逆转录病毒,包括HIV-1的有效帽依赖性翻译,和生长调节基因,包括JUND 6,20,21。由必需基因(dhx9)编码,RHA是细胞增殖和其下调基本消除了细胞活力22。 RHA-PCE的RNP的分子分析对于理解为什么RHA-PCE活性是必要的,以控制细胞增殖的重要步骤。

在稳定状态下或在细胞的生理扰动RHA-PCE RNP组分的确切性质要求RHA-PCE的RNP在足够丰富用于下游分析选择性富集和捕获。这里,逆转录病毒PCEgag的RNA具有标记为开放阅读框架内的MS2外壳蛋白(CP)的顺式作用的RNA结合位点的6份。该MS2外壳蛋白外切genously共表达质粒转染PCEgag的RNA以促进生长的细胞的RNP组件。含有同源MS2标记PCEgag RNA中的MS2外壳蛋白的RNP从细胞提取物中免疫沉淀和磁珠( 图2a)捕获。选择性地捕获结合于四氯乙烯的RNP部件,固定RNP用至远端的PCE序列互补的寡核苷酸温育,形成的RNA-DNA杂交是对RNA酶H活性的底物。因为四氯乙烯是位于非翻译区的5'5的终端“,寡核苷酸是相邻的逆转录病毒翻译起始位点(的gag起始密码子)的RNA序列互补。邻近在gag起始密码子从固定化的RNP,将其收集作为洗脱剂释放的5'非编码区复杂RNA酶H裂解。此后,将样品通过RT-PCR评估,以证实PCEgag的,并通过SDS PAGE和免疫印迹捕获确认captu重新目标MS2外壳蛋白。四氯乙烯相关的RNA结合蛋白的验证,DHX9 / RNA解旋酶A,然后进行。

Protocol

缓冲成分 洗涤液: 的50mM的Tris-HCl,pH 7.4的 150毫米氯化钠 3毫米氯化镁 低盐缓冲液: 的20mM的Tris-HCl,pH值7.5 10毫米氯化钠 3毫米氯化镁 2毫摩尔DTT 1×蛋白酶抑制?…

Representative Results

RIP前鉴定结果逆转录病毒插科打诨RNA和选择的共沉淀的细胞的RNA与DHX9 / RHA,包括HIV-1 6,勇得6户珥(弗里茨和鲍里斯-劳列,未发表)。反转录病毒的5'非编码区已被证明与DHX9 / RHA在细胞核共沉淀并在多核糖体的细胞质共同隔离。它是唯一定义为顺式短效后转录控制元件(PCE)6。为了分离形成增殖细胞PCEgag的RNA核糖核蛋白RHA复合物(体RNP…

Discussion

这里描述的RNP隔离和同源RNA识别策略是调查一个特定的RNA蛋白质相互作用,发现候选蛋白共同调节细胞的特异性RNP的选择性手段。

使用寡核苷酸定向RNA酶H切割以分离的RNP的优点是捕捉和具体分析过下游结合到感兴趣的顺式作用RNA元件异质的RNP的RNP顺式作用RNA元件的能力。因为在给定的RNP同源RNA的丰度是无RNA酶H裂解分离所收集的RNP的一小部分,该工作流的主要缺点是同源的RNP…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者非常感谢由美国国立卫生研究院P50GM103297,P30CA100730和综合癌症P01CA16058支持。

Materials

Dynabeads Protein A Invitrogen 10002D
Dynabeads Protein G Invitrogen 10004D
Anti- FLAG antibody Sigma F3165
Anti- FLAG antibody Sigma F7425
Anti-RHA antibody Vaxron PA-001
TRizol LS reagent Life technology 10296-028
RNase H Ambion AM2292
Chloroform Fisher Scientific BP1145-1
Isopropanol Fisher Scientific BP26184
RNaeasy clean-up column Qiagen 74204
Omniscript reverse transcriptase Qiagen 205113
RNase Out Invitrogen 10777-019
Protease inhibitor cocktail Roche 5056489001
Triton X-100 Sigma X100
NP-40 Sigma 98379
Glycerol Fisher Scientific 17904
Random hexamer primers Invitrogen N8080127
Oligo-dT primers Invitrogen AM5730G
PCR primers IDT Gene specific primers for  PCR amplification
Oligonucleotide for RNase H mediated cleavage IDT Anti-sense primer for target RNA
Trypsin Gibco Life technology 25300-054
DMEM tissue culture medium Gibco Life technology 11965-092
Fetal bovine serum Gibco Life technology 10082-147
Tris base Fisher Scientific BP152-5
Sodium chloride Fisher Scientific S642-212
Magnesium chloride Fisher Scientific BP214
DTT Fisher Scientific R0862
Sucrose Fisher Scientific BP220-212
Nitrocellulose membrane Bio-Rad 1620112
Magnetic stand 1.7 ml micro-centrifuge tube holding
Laminar hood For animal tissue culture
CO2 incubator For animal tissue culture
Protein gel apparatus Protein sample separation
Protein transfer apparatus Protein sample transfer
Ready to use protein gels (4-15%) Protein sample separation
Table top centrifuge Pellet down the sample
Table top rotator Mix the sample end to end
Vortex Mix the samples

References

  1. Bandziulis, R. J., Swanson, M. S., Dreyfuss, G. RNA-binding proteins as developmental regulators. Genes Dev. 3 (4), 431-437 (1989).
  2. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., Brown, P. O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6 (10), e255 (2008).
  3. Glisovic, T., Bachorik, J. L., Yong, J., Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582 (14), 1977-1986 (2008).
  4. Lunde, B. M., Moore, C., Varani, G. RNA-binding proteins: modular design for efficient function. Nat.Rev.Mol.Cell Biol. 8 (6), 479-490 (2007).
  5. Cochrane, A. W., McNally, M. T., Mouland, A. J. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology. 3, 18 (2006).
  6. Hartman, T. R., Qian, S., Bolinger, C., Fernandez, S., Schoenberg, D. R., Boris-Lawrie, K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat.Struct.Mol.Biol. 13 (6), 509-516 (2006).
  7. Pullmann, R., et al. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol.Cell.Biol. 27 (18), 6265-6278 (2007).
  8. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat.Rev.Genet. 8 (7), 533-543 (2007).
  9. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science. 309 (5740), 1514-1518 (2005).
  10. Hassan, M. Q., Gordon, J. A., Lian, J. B., van Wijnen, A. J., Stein, J. L., Stein, G. S. Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets. J.Cell.Biochem. 110 (4), 817-822 (2010).
  11. Selth, L. A., Close, P., Svejstrup, J. Q. Studying RNA-protein interactions in vivo by RNA immunoprecipitation. Methods Mol.Biol. 791, 253-264 (2011).
  12. Singh, D., Boeras, I., Singh, G., Boris-Lawrie, K. Isolation of Cognate Cellular and Viral Ribonucleoprotein Complexes of HIV-1 RNA Applicable to Proteomic Discovery and Molecular Investigations. Methods Mol.Biol. 1354, 133-146 (2016).
  13. Stake, M., et al. HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins. Virology. 486, 307-320 (2015).
  14. Sung, F. L., et al. Genome-wide expression analysis using microarray identified complex signaling pathways modulated by hypoxia in nasopharyngeal carcinoma. Cancer Lett. 253 (1), 74-88 (2007).
  15. Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat.Rev.Genet. 10 (1), 57-63 (2009).
  16. Michlewski, G., Caceres, J. F. RNase-assisted RNA chromatography. RNA. 16 (8), 1673-1678 (2010).
  17. Tacheny, A., Dieu, M., Arnould, T., Renard, P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J. Proteomics. 94, 89-109 (2013).
  18. Duan, R., Sharma, S., Xia, Q., Garber, K., Jin, P. Towards understanding RNA-mediated neurological disorders. J.Genet.Genomics. 41 (9), 473-484 (2014).
  19. Butsch, M., Hull, S., Wang, Y., Roberts, T. M., Boris-Lawrie, K. The 5′ RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. J. Virol. 73 (6), 4847-4855 (1999).
  20. Bolinger, C., et al. RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res. 35 (8), 2629-2642 (2007).
  21. Bolinger, C., Sharma, A., Singh, D., Yu, L., Boris-Lawrie, K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res. 38 (5), 1686-1696 (2010).
  22. Lee, T., et al. Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. J.Biol.Chem. 289 (33), 22798-22814 (2014).
  23. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72, 248-254 (1976).
  24. Glenn, G. Preparation of protein samples for mass spectrometry and N-terminal sequencing. Methods Enzymol. 536, 27-44 (2014).
  25. Keene, J. D., Komisarow, J. M., Friedersdorf, M. B. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat.Protoc. 1 (1), 302-307 (2006).
  26. Ranji, A., Shkriabai, N., Kvaratskhelia, M., Musier-Forsyth, K., Boris-Lawrie, K. Features of double-stranded RNA-binding domains of RNA helicase A are necessary for selective recognition and translation of complex mRNAs. J.Biol.Chem. 286 (7), 5328-5337 (2011).

Play Video

Cite This Article
Singh, G., Fritz, S. M., Ranji, A., Singh, D., Boris-Lawrie, K. Isolation of Cognate RNA-protein Complexes from Cells Using Oligonucleotide-directed Elution. J. Vis. Exp. (119), e54391, doi:10.3791/54391 (2017).

View Video