Summary

Potenciodinámico Pruebas de Corrosión

Published: September 04, 2016
doi:

Summary

Here, we present a protocol to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

Abstract

Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this.

Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material’s response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

Introduction

Las técnicas electroquímicas proporcionan un método rápido y relativamente barato de obtener las propiedades electroquímicas de un material. Estas técnicas se basan predominantemente en la capacidad de detectar la corrosión de un metal mediante la observación de la respuesta del proceso de transferencia de carga a una perturbación controlada electroquímica 1-5. La corrosión de los implantes de metal dentro de un entorno de cuerpo es crítica debido a las consecuencias adversas sobre la biocompatibilidad y el material de la integridad 6. El factor principal que contribuye a la corrosión de los implantes dentro del cuerpo es la disolución del óxido de la superficie que lleva a un aumento de la liberación de iones metálicos 7-11. Esto da lugar a reacciones biológicas adversas, que se pueden encontrar de forma local, pero con efectos potencialmente sistémicos que conducen a la falla prematura del implante 10,12-28.

Las características de corrosión de un espécimen de prueba se predicen a partir de la exploración de polarización producidopor un potenciostato. Una exploración de polarización permite la extrapolación de los parámetros cinéticos y de corrosión de un sustrato metálico. Durante un análisis, la oxidación o la reducción de una especie electro-activas puede ser limitado por la transferencia de carga y el movimiento de los reactivos o productos. Todos estos factores están encapsulados por la exploración de polarización; por lo tanto, la importancia de tener un sistema que produce una exploración de polarización fiable y repetible a través de múltiples ciclos es de gran importancia. El objetivo principal de este manuscrito es proporcionar un protocolo de identificación de la lógica y las medidas adoptadas para obtener un sistema de la corrosión potenciodinámico que funcione bien.

Protocol

1. Construcción del titular de la Muestra Construir el portamuestras y separadores de acero inoxidable y un tornillo de acero inoxidable roscado M3, que se celebró en su lugar con una tuerca hexagonal M3. Retire la cabeza del tornillo roscado con unos alicates y pulir el segmento de corte para mantener el patrón de rosca. Cuando todos los componentes individuales están listas, montar las pinzas de soldadura. Cada soporte del electrodo contiene tres espaciadores unidos entre sí mediant…

Representative Results

A la conclusión del procedimiento de un sistema in vitro de corrosión está configurada para llevar a cabo estudios de corrosión. Los procedimientos específicos, tales como la limpieza de la vasija de corrosión y la jaula de Faraday se introdujeron en el protocolo para mejorar el rendimiento de ruido. El concepto fundamental de una buena exploración de polarización es identificar las condiciones electro-físicas del material proporcionando información valiosa para compre…

Discussion

Exploraciones de polarización producidos a partir de las muestras de acero inoxidable mostraron parcelas continuas limpias que correlacionan con exploraciones visto en la literatura indicativa de un sistema que funcione bien la corrosión, que es a la vez fiable y reproducible 29. Poor reproducibilidad de los potenciales de picaduras potenciodinámicas se identifica con una extensión de unos pocos cientos de milivoltios, con picaduras ser potencial caracterizado por un proceso estocástico 29. Es…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors had no funding provided for this study.

Materials

Potentiostat Metrohm PGSTAT101
Ag/AgCl reference electrode, shielded Metrohm 6.0729.100
Electrode shaft Metrohm 6.1241.060
Polisher Forcipol 1v Metkon 3602
Clindrical flask 700mL SciLabware FR700F
Reaction lid SciLabware MAF2/41
Dichloromethane Sigma-Aldrich MKBR7629V use under a fumehood. Wear protective clothing
Thermo / HAAKE D Series Immersion Circulators Haake

References

  1. Isaacs, H. S. Aspects of corrosion from the ECS Publications. J. Electrochem. Soc. 149 (12), 85-87 (2002).
  2. Fontana, M. G., Greene, N. D. . Corrosion Engineering. , (1978).
  3. Pourbaix, M. Electrochemical corrosion of metallic biomaterials. Biomaterials. 5 (3), 122-134 (1984).
  4. Rechnitz, G. A. . Controlled-Potential Analysis. , (1963).
  5. Silverman, D. C., Revie, R. W. Chapter 68. Uhlig’s Corrosion Handbook. , (2000).
  6. Gurappa, I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact. 49 (1), 73-79 (2002).
  7. Antoniou, J., et al. Metal ion levels in the blood of patients after hip resurfacing: a comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. J Bone Joint Surg Am. 90, 142-148 (2008).
  8. Billi, F., Campbell, P. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J Appl Biomater Funct Mater. 8 (1), 1-6 (2010).
  9. Bradberry, S. M., Wilkinson, J. M., Ferner, R. E. Systemic toxicity related to metal hip prostheses. Clin Toxicol (Phila). 52 (8), 837-847 (2014).
  10. Davda, K., Lali, F. V., Sampson, B., Skinner, J. A., Hart, A. J. An analysis of metal ion levels in the joint fluid of symptomatic patients with metal-on-metal hip replacements. J Bone Joint Surg Br. 93 (6), 738-745 (2011).
  11. Clarke, M. T., Lee, P. T., Arora, A., Villar, R. N. Levels of metal ions after small and large diameter metal-on-metal hip arthroplasty. J Bone Joint Surg Br. 85 (6), 913-917 (2003).
  12. Brown, S. A., Hughes, P. J., Merritt, K. In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res. 6 (4), 572-579 (1988).
  13. Bryant, M., et al. Characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. J Mech Behav Biomed Mater. 32, 321-334 (2014).
  14. Jantzen, C., Jørgensen, H. L., Duus, B. R., Sporring, S. L., Lauritzen, J. B. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties. A literature review. Acta Orthopaedica. 84 (3), 229-236 (2013).
  15. Campbell, P., et al. Histological Features of Pseudotumor-like Tissues From Metal-on-Metal Hips. Clin. Orthop. Relat. Res. 468 (9), 2321-2327 (2010).
  16. Cook, S. D., et al. The in vivo performance of 250 internal fixation devices: a follow-up study. Biomaterials. 8 (3), 177-184 (1987).
  17. Cooper, H. J., Urban, R. M., Wixson, R. L., Meneghini, R. M., Jacobs, J. J. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am. 95 (10), 865-872 (2013).
  18. Langton, D. J., Sprowson, A. P., Joyce, T. J., Reed, M., Carluke, I., Partington, P., Nargol, A. V. Blood metal ion concentrations after hip resurfacing arthroplasty. J Bone Joint Surg Br. 91 (10), 1287-1295 (2009).
  19. Langton, D. J., Jameson, S. S., Joyce, T. J., Webb, J., Nargol, A. V. The effect of component size and orientation on the concentrations of metal ions after resurfacing arthroplasty of the hip. J Bone Joint Surg Br. 90 (9), 1143-1151 (2008).
  20. Daniel, J., Ziaee, H., Pradhan, C., McMinn, D. J. Six-year results of a prospective study of metal ion levels in young patients with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 91 (2), 176-179 (2009).
  21. De Haan, R., et al. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br. 90 (10), 1291-1297 (2008).
  22. Dijkman, M. A., de Vries, I., Mulder-Spijkerboer, H., Meulenbelt, J. Cobalt poisoning due to metal-on-metal hip implants. Ned Tijdschr Geneeskd. 156 (42), A4983 (2012).
  23. Fisher, J. Bioengineering reasons for the failure of metal-on-metal hip prostheses: an engineer’s perspective. J Bone Joint Surg Br. 93 (8), 1001-1004 (2011).
  24. Goldberg, J. R., et al. A Multicenter Retrieval Study of the Taper Interfaces of Modular Hip Prostheses. Clin. Orthop. Relat. Res. (401), 149-161 (2002).
  25. Ingham, E., Fisher, J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H. 214 (1), 21-37 (2000).
  26. Gilbert, J. L., Buckley, C. A., Jacobs, J. J., Res, J. .. B. i. o. m. e. d. .. M. a. t. e. r. .. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion and allot coupling. J. Biomed. Mater. Res. 76 (1), 1533-1544 (1993).
  27. Browne, J. A., Bechtold, C. D., Berry, D. J., Hanssen, A. D., Lewallen, D. G. Failed metal-on-metal hip arthroplasties: a spectrum of clinical presentations and operative findings. Clin. Orthop. Relat. Res. 468 (9), 2313-2320 (2010).
  28. Jantzen, C., Jorgensen, H. L., Duus, B. R., Sporring, S. L., Lauritzen, J. B. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties: a literature overview. Acta Orthop. 84 (3), 229-236 (2013).
  29. Frangini, S., De Cristofaro, N. Analysis of galvanostatic polarisation method for determining reliable pitting potentials on stainless steels in crevice-free conditions. Corros Sci. 45 (12), 2769-2786 (2002).

Play Video

Cite This Article
Munir, S., Pelletier, M. H., Walsh, W. R. Potentiodynamic Corrosion Testing. J. Vis. Exp. (115), e54351, doi:10.3791/54351 (2016).

View Video