This paper presents a sensitive method called Circle-Seq for purifying extrachromosomal circular DNA (eccDNA). The method encompasses column purification, removal of remaining linear chromosomal DNA, rolling-circle amplification and high-throughput sequencing. Circle-Seq is applicable to genome-scale screening of eukaryotic eccDNA and studying genome instability and copy-number variation.
外的环状DNA的(eccDNAs)是在酿酒酵母中共有遗传元件和在其它真核生物报告为好。 EccDNAs有助于遗传变异在多细胞生物的体细胞中和单细胞真核生物进化。需要检测eccDNA敏感的方法,以澄清这些因素是如何影响基因组的稳定性,如何将环境和生物因素诱导其在真核细胞的形成。此视频介绍了被称为圈-SEQ敏感eccDNA净化方法。该方法包括环状DNA,除去残留的线性染色体DNA,eccDNA的滚环扩增,深度测序和映射的柱纯化。被要求有足够的线性染色体DNA降解广泛核酸外切酶治疗。滚环扩增步骤由INE高度:正常;“>φ29聚合酶丰富超过线性DNA环状DNA上10细胞三维酿酒酵母 CEN.PK人群中圈-SEQ方法验证检测大小数百eccDNA型材超过1千碱基大。ASP3-1,COS111,CUP1,RSC30,HXT6,HXT7基因的环状DNA均S288C和CEN.PK表明,DNA环化是在这些位点菌株间保守的。总之反复调查,圆-SEQ方法具有广阔适用性在真核生物以及用于检测特定eccDNA类型的基因组规模筛选eccDNA。
发现早期或瞬态染色体扩增是困难的,因为它需要识别大量人口细胞在单个DNA分子的改变。染色体拷贝数变化(CNV的)其成立后,一般检测良好,只留下最后的CNV结构生成该变异1,2-机理的证据。检测并恢复在CNV形成的早期阶段外的环状DNA(eccDNA)可能在基因重排阐明正在进行的过程。
先前,eccDNA 从头发现是由电子显微镜照片如图3所示 ,中期染色体4,或双向电泳5的吉姆萨染色。这些方法提供了关于环状DNA的序列很少或没有信息。定位技术,例如Southern印迹6,7,反向PCR 8,或荧光原位 hybridizatioN 9只提供有关特定eccDNA元素的证据。这些方法没有提供所有现有eccDNA类型的细胞群的序列。
在细胞的基因组池分歧可以通过基因组测序和/或瓦片阵列10,11为特征。检测由常规的DNA纯化方法的缺失或扩增通常需要一个突变的等位基因代表了细胞群12,13的至少0.1-1%。偏心eccDNAs有望甚至在细胞培养更短暂,因为它们缺乏着丝粒中,并在复制潜在缺乏DNA合成。因此,由于大多数eccDNAs想必是在低用量和它们的序列相似的基因组中,需要替代的DNA提取方法来检测eccDNAs。
一些环状DNA纯化技术利用染色体和环状DNA之间的结构性差异。例如,高速ultracentrifug通货膨胀在氯化铯梯度被用于从人HeLa癌细胞株14分离350-3000个碱基对(bp)的大eccDNAs。然而,高速可以打破或缺口超螺旋环状DNA结构的中坚力量,改变沉降速度15和eccDNA产量。杜塔和同事开发了从头 ,从小鼠组织以及来自鸡的培养物和人细胞16,17环状DNA的基因组范围的识别的方法。他们的方法是通过蔗糖超速离心后质粒纯化和几轮酶促反应及DNA提取,从组织匀浆细胞核提取。他们的主要协议标识200-400基点eccDNAs,叫microDNAs。杜塔和同事也试图从酿酒酵母 microDNAs的净化,但无法从这种酵母菌种16条microDNA。
我们已经开发出一种新的方法从酵母eccDNA 从头检测称为圈-SEQ。此方法使基因组范围的调查为大到足以进行全基因和一样大86千碱基(kb的)线粒体DNA(mtDNA的)环状DNA分子。圆-SEQ方法是从一套行之有效的原核表达载体纯化方法18,19发达,真核酵母细胞进行了优化和深度测序相结合。通过圆弧-SEQ方法1756不同eccDNAs,全部大于1 KB,从十个与检测S.酵母 S288C烽烟20。之所以选择大小截止专注于eccDNA是大到足以进行全基因。圈-SEQ是高度敏感;它检测到的内数千个单元20的一个单eccDNA。在目前的研究中,圆-SEQ被用于分离和从另一个S的三次生物学重复确定294 eccDNAs 酵母酵母菌株,CEN.PK.该数据表明,eccDNA是一种常见的遗传elemeNT在S.酵母菌株。
圆-SEQ方法允许从酵母细胞序列级别分辨率eccDNA的基因组范围的检测。该方法是一种温和的eccDNA纯化不需要密集涡旋或吹打并通过重力利用柱分离以限制eccDNA破损,这将导致外切核酸酶消化在随后的步骤。该方法的这些特征可以是用于检测包含基因序列大eccDNAs至关重要。圈-SEQ检测众多eccDNAs包括全基因( 数据集1)。它也检测到86 kb的酵母线粒体DNA。因此,该协议有利于大型环状DNA分子的纯化。保持的DNA提取步骤的数目为最小降低eccDNA损失风险和最大化产量。基于结果的控制,尖刺入质粒,圆-SEQ是高度敏感的,2500细胞检测一个环状DNA。此外,去除内源丰富质粒如2μ;质粒或线粒体DNA可能显著提高灵敏度。从酵母培养2μ的固化已经描述30。可替代地,2μ和线粒体DNA去除可能与一个罕见切割核酸内切酶,如SwaI位来实现。然而,限制性内切酶一步可以针对感兴趣的其他eccDNAs和限制总eccDNA产量。
为eccDNA检测关键步骤是去除线性DNA(步骤3)和DNA测序(步骤5)以一适当的深度。从一个细胞群体记录的大多数eccDNAs的,深度测序可能需要20。配对末端测序应该提供eccDNA检测甚至更大的信心,因为环状DNA结被预期产生配对末端拼凑读取地图。这些差异支持环状DNA结构的发现,并且可以潜在地用作一个附加eccDNA检测滤波器。
圆硒Q滤波方法是使用三个独立S.验证酵母 CEN.PK人群。检测序列包括此前报道eccDNAs,内生质粒和尖刺,质粒和数百假定eccDNAs( 数据集1)的。这些发现支持从以前S.圈-SEQ数据集酵母 S288C 20。几个共同eccDNAs到CEN.PK和S288C群体的发现表明这些位点有一个倾向存在圆形元件( 图4)。之前我们已经表明,[GAP1 圈子 ]在CEN.PK后台8个氮有限条件下的丰富,虽然在其他应变背景[GAP1 圈 ]的证据还没有找到。从CUP1-1 RSC30,ASP3-1,COS111和HXT6 HXT7位点均S288C和CEN.PK eccDNA的发现表明,对于DNA环化的倾向是骗子酵母菌株之间供应。这还有待证明,如果[HXT6 / 7 圈 ],[ASP3-1 圈 ],[COS111 圈 ]和[CUP1-1 RSC30 圈 ]赋予选择性的优势细胞,或者他们的存在仅仅是高利率的效果DNA函证。
两者合计,结果表明,金环-SEQ是非常适合用于检测碱基大小eccDNAs并具有优势用于识别与完整基因eccDNAs。圆-SEQ是使eccDNAs的全基因组规模屏幕从酵母高灵敏度的方法。圆-SEQ方法可以打开旨在阐明eccDNA在产生基因缺失和扩增的作用研究的新领域。给定的DNA结构和结构的主要来自真核酵母保守到高等真核生物,圆-SEQ方法应,在原则上,是applicablE要所有真核细胞,有轻微的修改。目前,该方法不会出现有任何的限制,虽然还没有被示出它的净化兆碱基大小的eccDNAs能力。此外,使用O29 DNA聚合酶,它采用了滚环扩增方法31的,产生向更小eccDNAs使得eccDNA量化更加困难的偏压。圈-SEQ检测eccDNAs大到足以进行全基因,使其适用于从人体细胞双分钟,环状DNA研究。双分钟就可以导致癌症时,原癌基因被这些元素放大32-37。在生殖细胞eccDNAs研究可以用来衡量胚系突变率和评估精子质量,例如在牲畜。因此,圆-SEQ有得到分析上市在哪些遗传变异产生的拷贝数变异的形式的速率,并导致的疾病的新的理解是涉及基因的复印的电位数变异38-40。
The authors have nothing to disclose.
Thanks to Kenn D. Møller and Claus Sternberg (DTU) for technical assistance and to Tue S. Jørgensen for quantitative PCR analysis.
Bacto peptone | BD Difco | 211677 | Alternative product can be used. |
Brilliant III SYBR Green PCR Master Mix | Agilent Technologies | 600882 | For qPCR analysis. Alternative product can be used. |
Dextrose (D-glucose) | Carl Roth | HN06.4 | Alternative product can be used. |
Disruptor Beads, 0.5 mm | Scientific Industries, Inc. | SI-BG05 | Glass beads to disrupt plasma cell membranes. Alternative product can be used. |
Ethidium bromide | Carl Roth | 2218.2 | Agarose gel stain for detecting DNA/RNA. |
GeneJet plasmid miniprep kit | Thermo Fisher | K0502 | Plasmid purifcation from bacteria. Alternative product can be used |
NotI, FastDigest | Life Technologies - Thermo Fisher Scientific, USA | FD0594 | Endonuclease. Alternative product can be used. |
Plasmid Mini AX kit | A&A Biotechnology, Poland | 010-50 | Plasmid purifcation kit used to purify eccDNA. |
Plasmid-Safe ATP-dependent DNase kit | Epicentre, USA | E3105K | ATP-dependent exonuclease kit. Alternative product can be used. |
Propidium iodide | Sigma-Aldrich, USA | 81845 | Alternative product can be used. |
pUG6 plasmid | EUROSCARF, Germany | P30114 | Marker gene: loxP-PAgTEF1-kanMX-TAgTEF1-loxP. Plasmid requests: Please contact Dr. Peter Philippsen@unibas.ch |
QIAGEN genomic-tip 100/G | Qiagen, USA | 13343 | Genomic DNA purifcation from yeast. Alternative product can be used. |
REPLI-g Mini Kit protocol | Qiagen, USA | 150023 | Amplification of eccDNA by the phi29 polymerase |
Yeast extract | BD Difco | 210929 | Alternative product can be used. |
Zymolyase 100T (Lyticase, Yeast Lytic Enzyme) | Nordic BioSite, Sweden | Z1004-3 | Alternative product can be used. |
Data access to sequence files | European Nucleotide Archive | EccDNA dataset from Saccharomyces cerevisiae CEN.PK113-7D. Study accession number PRJEB9684. 2nd accession number is ERP010820. Locus tag prefix is BN2032. | |
Strains | |||
Saccharomyces cerevisiae CEN.PK113-7D | Genotype MATa MAL2-8c SUC2 | ||
Saccharomyces cerevisiae yeast deletion library pool | EUROSCARF, Germany | S288c BY4741 pool of 4400 viable single-gene deletion mutants disrubted by KanMX module. Genotypes MATa his3∆1 leu2∆0 met15∆0 ura3∆0 genexxx::KanMX. | |
Equipments | |||
DNA Spectrophotometer | NanoDrop 1000 Spectrophotometer, Thermo Fisher | Measuring DNA concentration. Alternative product can be used. | |
Fluorescence microscopy | Nikon Optronics Magnafire. Red excitation fluorescence filter, 663-738 nm. | Alternative product can be used. | |
Robotic library-build system | Apollo 324, IntegenX Inc. | DNA library preparation. Alternative product can be used. | |
Sequencing platform | Illumina HiSeq 2000 platform, Illumina Inc. | DNA sequencing. Alternative product can be used. | |
Ultrasonicator | Covaris LE220, microTUBE AFA Fiber tubes | Alternative product can be used. | |
Methods | |||
2% YPD media | Mix 10 g Dextrose, 10 g Yeast extract, 20 g Bacto peptone and add H2O to a total volume of 1000 ml and autoclave. | ||
Circle-Seq test on genomic DNA | Genomic DNA was purified (Qiagen) from a pool of the yeast deletion library (Euroscarf). The DNA concentration was measured by nanodrop and 30 µg genomic DNA was pipetted into two micro centrifuge tubes. One micro centrifuge tube was supplemented with 100 nanogram plasmid (pUG6). The DNA samples were purified by Circle-Seq, omitting the protocol steps 1.1-1.3 and 1.5-1.7. The eluted DNA concentrations were measured by nanodrop and the entire DNA yield from sample GD and GD+P was treated with exonuclease for a period of 29 hours. A 10% fraction was collected for phi29-amplification and PCR analysis, while the remaining DNA was subjected to 72 hour exonuclease treatment. The samples were analyzed for linear DNA content by PCR, using the ACT1 gene as chromosomal marker. A 5% fraction of each of the exonuclease treated samples was amplified by the phi29 DNA polymerase for 16 hours (Qiagen). The presence of DNA in each sample was examined by loading an equal amount (7 µl) in wells on an 0.5 µg/ml ethidium-bromide 0.9% agarose gel after running gel-electrophoresis. | ||
Mapping software | Bowtie2 aligner, John Hopkins University | Ultrafast short read alignment. Reference: Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012, 9:357-359. | |
Propidium iodide stain | Images of propidium iodine stained DNA were captured by fluorescence microscopy at 100x magnification (100x/1.30 oil, Nikon) in the RFP channel (red excitation fluorescence filter, 663-738 nm) using identical exposition time (5 seconds). | ||
Workflow bioinformatic system | Galaxy, Open source. | A free web-based platform for data intensive biomedical research. References: Goecks, J, Nekrutenko, A, Taylor, J and The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010 Aug 25;11(8):R86. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. "Galaxy: a web-based genome analysis tool for experimentalists". Current Protocols in Molecular Biology. 2010 Jan; Chapter 19:Unit 19.10.1-21. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A. "Galaxy: a platform for interactive large-scale genome analysis." Genome Research. 2005 Oct; 15(10):1451-5. |