This protocol describes simultaneous measurement of electroretinogram and visual evoked potentials in anesthetized rats.
The electroretinogram (ERG) and visual evoked potential (VEP) are commonly used to assess the integrity of the visual pathway. The ERG measures the electrical responses of the retina to light stimulation, while the VEP measures the corresponding functional integrity of the visual pathways from the retina to the primary visual cortex following the same light event. The ERG waveform can be broken down into components that reflect responses from different retinal neuronal and glial cell classes. The early components of the VEP waveform represent the integrity of the optic nerve and higher cortical centers. These recordings can be conducted in isolation or together, depending on the application. The methodology described in this paper allows simultaneous assessment of retinal and cortical visual evoked electrophysiology from both eyes and both hemispheres. This is a useful way to more comprehensively assess retinal function and the upstream effects that changes in retinal function can have on visual evoked cortical function.
Измерение электроретинограмму (ЭРГ) и вызванный потенциал зрительного нерва (ВЭП) обеспечивают полезные количественные оценки целостности зрительного пути. ERG измеряет электрические реакции сетчатки к световой стимуляции, в то время как ВЭП измеряет соответствующую функциональную целостность зрительных путей от сетчатки к первичной зрительной коре следующий же светлым событием. Эта рукопись описывает протокол для записи и анализа ЭРГ и ЗВП ответов в широко используемом лабораторной модели, крысы.
ERG обеспечивает индекс функциональной целостности ряда ключевых классов клеток сетчатки путем количественной оценки валовой электрический ответ сетчатки к вспышке света. Согласованный ряд ионных потоков, инициирована света начало и окончание, производства обнаруживаемыми изменения напряжения, которые можно измерить с помощью поверхностных электродов, размещенных вне глаза. Полученный сигнал представляет собой сочетание себеРиз хорошо определенных компонентов, отличающихся по амплитуде, времени и частоте. Значительное число исследований показало, что эти компоненты относительно хорошо сохраняются во многих позвоночной сетчатке и что компоненты могут быть отделены друг от друга. При разумном выборе стимула (вспышки стимула, фон, межстимульный интервал) условий и выбора конкретных особенностей составного сигнала для анализа можно быть уверенным в возврате меру определенной группы клеток сетчатки глаза 1,2. Эти характеристики лежат в основе полезности и, следовательно, широкое применение ЭРГ в качестве неинвазивного измерения функции сетчатки глаза. Эта рукопись посвящена методологии измерения ЭРГ и анализа своих возможностей, чтобы возвратить информацию о некоторых из основных классов клеток в сетчатке, а именно фоторецепторов (компонент PIII), биполярные клетки (компонент PII) и ганглиозных клеток сетчатки (положительный скотопическое порог срабатывания или pSTR).
<p class= "Jove_content"> ВЭП обеспечивает анализ корковой реакции на свет; первых , происходящих из сетчатки , а затем передаваться последовательно через зрительный нерв, зрительный тракт, таламус (боковое коленчатое ядро, ЛГН) и оптического излучения в зоне V1 коры 3. У грызунов, большинство (90 – 95%) волокон зрительного нерва от каждого глаза 4 пересекающийся под прямым углом и иннервируют контралатеральной среднего мозга. В отличие от ERG, это еще не представляется возможным приписать различные компоненты ВЭП к конкретным классам клеток, 5 , таким образом , изменяется в любом месте вдоль зрительного пути может повлиять на форму волны ВЭП. Тем не менее, ВЭП является полезным неинвазивным мерой зрительной эффективности и целостности зрительного пути. ВЭП, при использовании в сочетании с ERG, могут обеспечить более полную оценку зрительной системы (то есть, сетчатка / визуальный путь).ЭРГ и ЗВП записи могут проводиться отдельно или в комбинации, в зависимости от примекатион. Методология, описанная в данной статье позволяет одновременно оценить и сетчатке корковой зрительных вызванных электрофизиологии от обоих глаз и обоих полушарий у наркотизированных крыс. Это полезный способ более полно оценить функцию сетчатки глаза и вверх по течению эффекты, что изменения в функции сетчатки может иметь на зрительной функции коры головного мозга вызывала.
ЭРГ и ЗВП объективные показатели зрительной функции от сетчатки и коры головного мозга, соответственно. Преимущество одновременной записи является то, что более полное представление всего зрительного пути, обеспечивает ее. В частности, дополнительная информация от их одновременной о…
The authors have nothing to disclose.
Funding for this project was provided by the National Health and Medical Research Council (NHMRC) 1046203 (BVB, AJV) and Melbourne Neuroscience Institute Fellowship (CTN).
Alligator clip | generic brand | HM3022 | Stainless steel 26 mm clip for connecting VEP screw electrodes to cables |
Bioamplifier | ADInstruments | ML 135 | For amplifying ERG and VEP signals |
Carboxymethylcellulose sodium 1.0% | Allergan | CAS 0009000-11-7 | Viscous fluid for improving signal quality of the active ERG electrode |
Carprofen 0.5% | Pfizer Animal Health Group | CAS 53716-49-7 | Proprietary name: Rimadyl injectable (50 mg/mL). For post-surgery analgesia, diluted to 0.5% (5 mg/mL) in normal saline |
Chlorhexadine 0.5% | Orion Laboratories | 27411, 80085 | For disinfecting surgical instruments |
Circulating water bath | Lauda-Königshoffen | MGW Lauda | For maintaining body temperature of the anesthetized animal during surgery and electrophysiological recordings |
Dental amalgam | DeguDent GmbH | 64020024 | For encasing the electrode-skull assembly to make it more robust |
Dental burr | Storz Instruments, Bausch and Lomb | #E0824A | A miniature drill head of ~0.7mm diameter for making a small hole in the skull over each hemisphere to implant VEP screws |
Drill | Bosch | Dremel 300 series | An automatic drill for trepanning |
Electrode lead | Grass Telefactor | F-E2-30 | Platinum cables for connecting silver wire electrodes to the amplifier |
Faraday Cage | custom-made | Ensures light proof to maintain dark adaptation. Encloses the Ganzfeld setup to improve signal to noise ratio | |
Gauze swabs | Multigate Medical Products Pty Ltd | 57-100B | For drying the surgical incision and exposed skull surface during surgery |
Ganzfeld integrating sphere | Photometric Solutions International | Custom designed light stimulator: 36 mm diameter, 13 cm aperture size | |
Velcro | VELCRO Australia Pty Ltd | VELCRO Brand Reusable Wrap | Hook-and-loop fastener to secure the electrodes and the animal on the recording platform |
Isoflurane 99.9% | Abbott Australasia Pty Ltd | CAS 26675-46-7 | Proprietary Name: Isoflo(TM) Inhalation anaaesthetic. Pharmaceutical-grade inhalation anesthetic mixed with oxygen gas for VEP electrode implant surgery |
Ketamine | Troy Laboratories | Ilium Ketamil | Proprietary name: Ketamil Injection, Brand: Ilium. Pharmaceutical-grade anesthetic for electrophysiological recording |
Luxeon LEDs | Phillips Lighting Co. | For light stimulation twenty 5 watt and one 1 watt LEDs. | |
Micromanipulator | Harvard Apparatus | BS4 50-2625 | Holds the ERG active electrode during recordings |
Needle electrode | Grass Telefactor | F-E2-30 | Subcutaneously inserted in the tail to serve as the ground electrode for both the ERG and VEP |
Phenylephrine 2.5% minims | Bausch and Lomb | CAS 61-76-7 | Instilled with Tropicamide to achieve maximal dilation for ERG recording |
Povidone iodine 10% | Sanofi-Aventis | CAS 25655-41-8 | Proprietory name: Betadine, Antiseptic to prepare the shaved skin for surgery 10%, 500 mL |
Powerlab data acquisition system | ADInstruments | ML 785 | Controls the LEDs |
Proxymetacaine 0.5% | Alcon Laboratories | CAS 5875-06-9 | For corneal anaesthesia during ERG recordings |
Saline solution | Gelflex | Non-injectable, for electroplating silver wire electrodes | |
Scope Software | ADInstruments | version 3.7.6 | Simultaneously triggers the stimulus via the Powerlab system and collects data |
Silver (fine round wire) | A&E metal | 0.3 mm | Used to make active and inactive ERG electrodes, and the inactive VEP electrode |
Stainless streel screws | MicroFasterners | 0.7 mm shaft diameter, 3 mm in length to be implanted over the primary visual cortex and serve as the active VEP electrodes | |
Stereotaxic frame | David Kopf | Model 900 | A small animal stereotaxic instrument for locating the primary visual cortices according to Paxinos & Watson's 2007 rat brain atlas coordinates |
Surgical blade | Swann-Morton Ltd. | 0206 | For incising the area of skin overlaying the primary visual cortex to implant the VEP electrodes |
Suture | Shanghai Pudong Jinhuan Medical Products Co.,Ltd | 3-0 silk braided suture non-absorbable, for skin retraction during VEP electrode implantation surgery | |
Tobramycine eye ointment 0.3% | Alcon Laboratories | CAS 32986-56-4 | Proprietary name: Tobrex. Prophylactic antibiotic ointment applied around the skin wound after surgery |
Tropicamide 0.5% | Alcon Laboratories | CAS 1508-75-4 | Proprietary name: 0.5% Mydriacyl eye drop, Instilled to achieve mydriasis for ERG recording |
Xylazine | Troy Laboratories | Ilium Xylazil-100 | Pharmaceutical-grade anesthetic for electrophysiological recording |
Pipette tip | Eppendorf Pty Ltd | 0030 073.169 | Eppendorf epTIPS 100 – 5000 mL, for custom-made electrodes |
Microsoft Office Excel | Microsoft | version 2010 | spreadsheet software for data analysis |
Lethabarb Euthanazia Injection | Virbac (Australia) Pty Ltd | LETHA450 | 325 mg/mL pentobarbital sodium for rapid euthanazia |