This article describes methods for site-directed spin labeling and reconstitution of pentameric ligand-gated channels for Electron Paramagnetic Resonance studies. This protocol can be adapted for any membrane protein. The reconstitution method described here can also be used for patch-clamp measurements of macroscopic and single-channel currents in a defined lipid system.
Ion channel gating is a stimulus-driven orchestration of protein motions that leads to transitions between closed, open, and desensitized states. Fundamental to these transitions is the intrinsic flexibility of the protein, which is critically modulated by membrane lipid-composition. To better understand the structural basis of channel function, it is necessary to study protein dynamics in a physiological membrane environment. Electron Paramagnetic Resonance (EPR) spectroscopy is an important tool to characterize conformational transitions between functional states. In comparison to NMR and X-ray crystallography, the information obtained from EPR is intrinsically of lower resolution. However, unlike in other techniques, in EPR there is no upper-limit to the molecular weight of the protein, the sample requirements are significantly lower, and more importantly the protein is not constrained by the crystal lattice forces. Therefore, EPR is uniquely suited for studying large protein complexes and proteins in reconstituted systems. In this article, we will discuss general protocols for site-directed spin labeling and membrane reconstitution using a prokaryotic proton-gated pentameric Ligand-Gated Ion Channel (pLGIC) from Gloeobacter violaceus (GLIC) as an example. A combination of steady-state Continuous Wave (CW) and Pulsed (Double Electron Electron Resonance-DEER) EPR approaches will be described that will enable a complete quantitative characterization of channel dynamics.
Over the last decade, the structural understanding of pentameric ligand-gated ion channels (pLGIC) has grown in leaps and bounds, owing to multitudes of high-resolution structures of several members of the family. Key factors that led to the current advancements in the field include, the discovery of prokaryotic pLGIC channels,1-3 major progresses in eukaryotic membrane protein expression,4-6 and tremendous breakthroughs in structure determination approaches.7 These structures provide a clear consensus on the overall conservation of the three-dimensional architecture of pLGIC. However, two major areas that seem to trail behind are the functional characterization of these channel preparations and the mechanistic description of channel function.
Gating conformational changes are complex and occur over a 60 Å distance along the length of the channel and these transitions are extensively modulated by membrane lipids. In particular, negative lipids, cholesterol, and phospholipids have been shown to modulate the function of pLGIC8-11. While the precise role of these lipid constituents in channel function remains unknown, a complete molecular understanding of gating would require studying these channels in their native environment. Site-Directed Spin Labeling (SDSL) and Electron Paramagnetic Resonance (EPR) spectroscopy are the techniques of choice for studying protein dynamics in reconstituted systems. EPR spectroscopy is not limited by the molecular size (as is NMR) or the optical property of the sample (as is fluorescence spectroscopy), and thereby allows measurements of full-length constructs reconstituted in native lipid conditions. The technique is extremely sensitive and has relatively low sample requirements (in the pico-mole range). Both these aspects make the technique well suited for studying large membrane proteins that are difficult to express in over milligram quantities.
The use of EPR spectroscopy in combination with site-directed spin labeling was developed by Wayne Hubbell and colleagues, and has been adapted for studying a range of protein types.12-24 EPR data have been used to investigate secondary structures, changes in the protein conformation, membrane-insertion depths, and protein-protein/protein-ligand interactions.
The method involves cysteine substitution at positions of interest by site-directed mutagenesis. To ensure site-specific labeling, it is necessary to substitute native cysteines with another amino acid (e.g., serine) to create a cysteine-less template. By far, the most popular spin label is a thiol-specific MTSL: (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate that attaches to the protein through a disulfide bond bridge. Due to its high specificity, relatively small size (slightly larger than tryptophan), and flexibility of the linker region, this spin label has been shown to have excellent reactivity even with a buried cysteine. Furthermore, to maximize reactivity, the labeling reaction of the protein is carried out in the detergent-solubilized form. After separation of the excess free spin-label by size exclusion chromatography, the protein is reconstituted into liposomes or bilayer-mimicking systems of defined lipid composition. In general, cysteine mutagenesis is well tolerated in most parts of the protein, and the relatively small size of the spin-probe causes minimal perturbation to the secondary and tertiary structures. To ensure that the modification retained wild type functions, the labeled and reconstituted channels can be studied by patch-clamp measurements.
The labeled-functional protein is then subjected to spectroscopic measurements, which essentially provide three main types of information:12,14,15,20,22,23,25-27 spin-probe dynamics by lineshape analysis; accessibility of the probe to paramagnetic relaxation agents; and distance distribution.27 EPR distances are measured by two different approaches. The first is based on the Continuous Wave (CW) technique, where spectral broadening arising from dipolar interactions between spin-labels (in the 8 – 20 Å distance range) is used to determine distance.28,29 The second is a pulsed-EPR method where distance measurements can be extended up to 70 Å.30-34 In Double Electron Electron Resonance (DEER), oscillations in the spin-echo amplitude are analyzed to determine distances and distance distributions. Here the spin echo is modulated at the frequency of the dipolar interaction. Together, these parameters are used to determine protein topology, secondary structural elements, and protein-conformational changes.
1. Site-Directed Mutagenesis and Cys Mutations
2. GLIC Expression and Purification
3. GLIC Reconstitution in Asolectin Membranes
4. Determine Optimal Lipid Composition for Reconstitution by FRET
5. Functional Measurements by Patch-clamp Recordings
6. EPR Measurements
Biochemical Characterization of Spin-labeled GLIC Mutants
Following the above described protocol would typically yield GLIC-MBP fusion protein in the range of 10 – 12 mg/L of culture. Although this value may vary across different mutants, particularly for positions buried within the protein, the yield may be significantly compromised. In these cases, the culture volumes may require scaling up. The cleavage of the fusion construct by HRV3C protease is carried out O/N for convenience. By running the samples on SDS PAGE gel, we found that this cleavage is complete within 30 – 60 min. (Figure 1A). Purified GLIC on size exclusion gel filtration column elutes predominantly as a pentamer with a retention volume of 11.3 ml. The MBP fraction elutes at 15 ml and aggregates elute at the void volume of the column (~7.0 ml). The spin-label comes at the end of the elution (~24 ml) (Figure 1B)
FRET Based Assay for Monitoring Aggregation of GLIC Reconstituted in Various Membrane Lipids
FRET-assay is used to evaluate aggregation of GLIC pentamers in reconstituted vesicles (came together within a distance <50 Å on the membrane). Figure 2 shows data from GLIC wt (with C27, labeled with either Fluorescein or tetramethylrhodamine) and reconstituted in E.coli polar lipids, POPC:POPG (3:1), POPE:POPG (3:1) or asolectin. Fluorescence measurements show that GLIC reconstituted in asolectin showed no FRET and even freeze/thawing the sample (conditions known to promote aggregation) produced minimal change in the FRET levels43. For this reason, asolectin is the lipid mixture of choice for functional and spectroscopic measurements used in these studies.
Macroscopic Behavior of GLIC in Proteoliposomes
Functional properties of purified GLIC are characterized by patch-clamp measurement in reconstituted proteoliposomes. Representative macroscopic current recording from wt GLIC from an inside-out patch in response to a pH-jump is shown in Figure 3. At -100 mV holding potential, switching to pH 3.0 buffer produces rapidly activating inward currents (10 – 100 msec) that decay to about 10% of the peak amplitude within seconds43 (1 – 3 sec, Figure 3). Currents recover from this macroscopic decay or desensitization by switching back to neutral pH. While channels in the inside-out patch were sensitive to changes in the bath pH, there was no effect of pH change in the pipette solution (data not shown) suggesting that GLIC was predominantly oriented in one direction such that in the patch the extracellular domain faced the bath/solution exchanger.
Structural Rearrangements During Channel Activation
At RT, the spin-probe can adopt multiple rotameric conformations, and the spectral line shape is sensitive not only to the motion of spin-label side-chains relative to the peptide backbone, but also to backbone fluctuations and to global protein motions. Therefore, changes in EPR lineshapes can prove to be an excellent diagnostic tool to monitor protein conformational changes. Figure 4 shows spectra at position L241(17)R1 in the extracellular hydrophobic region of the pore-lining M2 region (position highlighted as black circles in Figure 4, Inset) at pH 7.0 and pH 3.0. The spectra show differences under the two conditions, both in the signal amplitude and the extent of motional broadening. As with functional measurements42, the conformational changes reported by the EPR signals are also fully reversible. Spectral broadening is affected both by the motional constraints of the probe and by dipolar coupling. To determine the contribution of the two, L241(17) is co-labeled with a diamagnetic spin-label. The under-labeled and fully-labeled spectra are compared at pH 7.0 and pH 3.0 (Figure 4B). The extent of dipolar broadening at this position decreases when the channels are under labeled, which indicates an interaction between spin-labels among different subunits.
Figure 5 shows spectra for two positions on the M4 helix which is located at the periphery of the channel. ΔHo-1 is measured as the inverse of the central line width (shown in inset). As the nitroxide rotational motion is reduced, as witnessed during the formation of tertiary or quaternary contacts, the line width increases (and hence ΔHo-1 decreases) for any particular motional geometry. On the contrary, structural motions leading to an increase in the probe's freedom of movement is reflected as an increase in ΔHo-1. F312R1 is more mobile while R296R1 is immobile, consistent with their exposed and highly constrained environments, respectively.
Based on the accessibility parameters, a spin-label at a specific position on the protein can be classified as one of the following: buried within the protein core inaccessible to either water or lipids, on the surface exposed to an aqueous solution, or on the surface exposed to lipids (Figures 5 and 6). The accessibility parameters obtained for a series of consecutive sites can then be used to determine the secondary structure of a region, probe areas of protein-protein contact, measure the tilt of a protein within the membrane, estimate the immersion depth of interfacial loops, and identify water vestibules and lipid-bound pockets within the transmembrane helices.26 As an example, power-saturation curves in Figure 6 show that F312R1 has a relatively higher P1/2 for O2, in comparison to R296R1, suggesting the side-chains at position F312 are lipid-exposed. In addition, F312R1 is also more accessible to NiEDDA in comparison to R296R1 consistent with its location at the lipid-water interface. On the other hand, L180R1 in the loop C region of the extracellular domain is mobile and accessible to NiEDDA, consistent with its location in a water-exposed loop.
Probe dynamics and accessibility data at a given position provide local structural information about that specific position within the overall protein-fold. These parameters determined for a linear sequence of residues along the protein can be further analyzed using analytical approaches based on Fourier transform methods. These analyses are useful to evaluate periodic variations in EPR environmental parameters and to guide in predicting and orienting secondary structures. For a particular protein segment, a discrete Fourier transform power spectrum P(ω) is calculated as a function of the angle between adjacent positions (ω) in that segment. This plot is then used to determine the main angular frequency component of the spectrum and compared to the expected (ω) values for an α-helix (80 – 120º) or β-strands (150 – 180º).
where P('ω') is the Fourier transform power spectrum as a function of angular frequency ω, n is the number of residues in the segment, is environmental parameter at the position . P('ω') gets evaluated for the value ω= that maximizes P('ω').
Further, a periodicity index parameter (gives the significance of the predicted secondary structure) is calculated as a ratio of the area under the power spectrum for the angle that represents a given structural element to that of the total area of the spectrum. A sliding window method is then used to identify the beginning and the end of a given secondary structural element. The relative orientation this segment with respect to the rest of the protein can be estimated from the direction of the P('ω') moment.
For α-helix:
For β-strand:
These methods have been successfully applied to several systems to determine three dimensional topologies and predict conformational changes underlying protein function 14,23,24,41,44-53.
Determining Distance Distribution from EPR
Inter-subunit nitroxide distances can be determined from electron-electron dipolar interactions. In CW-EPR, as shown in Figure 4, through-space dipolar interactions lead to spectral broadening and are a function of proximity between the labels. For distances up to ~15 – 20 Å, the extent of broadening (compared between fully labeled spectra and the under-labeled spectra) can be used to semi-quantitatively estimate distances using Fourier deconvolution methods.28,29
Inter-subunit distances (<50 Å) can be measured using Double Electron-Electron Resonance (DEER) methods.30-34 DEER data are collected in detergent samples or reconstituted in nanodiscs because of the limitations associated with these measurements in liposomes 54. For spin-labeled samples in detergent (~100 μM) in Buffer A with 0.5 mM DDM, 30% (weight/volume) glycerol is used for cryoprotection. The dipolar time evolution data are obtained at 83 K using a standard DEER four-pulse protocol (π/2)mw1-τ1-(π)mw1-τ1-(π)mw2-τ2-(π)mw1-τ2-echo55 on a pulsed EPR spectrometer operating at Q-band frequency (33.9 GHz). The pulse lengths for (π/2)mw1 and (π)mw1 are 10 and 20 nsec, respectively, and 40 nsec for (π)mw2. DEER signals are then background corrected assuming a 3D homogeneous background and analyzed by the Tikhonov regularization31,56 to determine average distances and distributions in distance.
Intramolecular distances for a representative position in M4 (F314R1) determined by DEER experiments at pH 7.0 are shown in Figure 7. Since there are five spin-labels within the GLIC pentamer, at least two distances are expected; one corresponding to the adjacent subunits and the other from nonadjacent subunits, although additional peaks may arise from alternate rotameric spin orientations. The DEER signal decays and the corresponding probability distributions are shown. The first short-distance peak (~42Å) represents distances between adjacent subunits, and the second peak (~53Å) corresponds to the non-adjacent distance. The peak for the diagonal distance appears to be at shorter distance, and this is likely to be underestimated because reliable measurements beyond 60 Å are not feasible under the experimental conditions due to technical difficulties with background correction.
Figure 1. Biochemical Characterization Spin-labeled GLIC Mutants. (A) Representative gel filtration chromatogram of spin-labeled-GLIC after proteolytic cleavage of MBP tag. The peaks correspond to GLIC pentamer and free MBP. (B) SDS-PAGE showing uncut monomeric GLIC-MBP fusion protein (before gel filtration) and MBP and GLIC fractions pooled from gel filtration. Please click here to view a larger version of this figure.
Figure 2. FRET Based Assay for Monitoring the Aggregation State of GLIC Reconstituted in Various Membrane Lipids. FRET measurements are shown for samples after O/N reconstitution (left) and after freezing/thawing the samples (right). (Modified from the original figure).43 Please click here to view a larger version of this figure.
Figure 3. Macroscopic Behavior of GLIC in Proteoliposomes. In an inside-out patch excised from reconstituted asolectin vesicles, GLIC is activated by pH jumps using a rapid solution exchanger. The channels are seen to activate in ~10 msec and desensitize with a time constant of 1 – 3 sec. (Modified from the original figure).43 Please click here to view a larger version of this figure.
Figure 4. Structural Rearrangements During Channel Activation. (A) Representative CW-EPR spectra for a position in the pore lining M2 helix, displaying changes in amplitude and line shapes in response to pH changes. In each case, the spectra are normalized to the total number of spins. Spin-labeled position is shown as a black circle. Only two subunits are shown for clarity. (B) EPRspectra show dipolar broadening by spin-spin interactions. The spectra in dashed-line were from under-labeled channels (in the presence of diamagnetic labels) and in solid-line were from fully-labeled channels. The inset shows an overlay of amplitude-normalized spectra. Broadening under fully labeled conditions is highlighted by arrows. Scan width is 150 G. (Modified from the original figure).36 Please click here to view a larger version of this figure.
Figure 5. Residue Specific Environmental Parameters Measured by Power Saturation. Measurements of spectral width (ΔH0) and solvent accessibility (P1/2) for two contrasting positions in the M4 helix of the transmembrane domain. Please click here to view a larger version of this figure.
Figure 6. Environment of a Representative Loop C Residue in the Extracellular Domain of GLIC. Spin-normalized CW-spectra and the corresponding accessibility measurements for L180R1. Please click here to view a larger version of this figure.
Figure 7. Distance Measurements by Pulsed-EPR Approaches (DEER). GLIC structure showing the location of Phe314 and corresponding cβ-cβ distances for the adjacent and non-adjacent subunits. CW-spectra for this position are shown on the right. Background subtracted DEER- echo intensity is plotted against evolution time and fit using model-free Tikhonov regularization for samples in detergent. The corresponding inter-spin distance distribution (right). Please click here to view a larger version of this figure.
EPR spectroscopy has proven to be an unparalleled structural approach in quantifying conformational changes in membrane proteins in a near-native environment. This approach allows us a peek into the molecular details of protein dynamics that are obscured in high-resolution structures from X-ray crystallography and Cryo-electron microscopy. However, it is important to consider the technical limitations of this approach that may affect the general applicability to other systems and also to keep in mind the potential experimental roadblocks along the way. We discuss some of these aspects below along with recommended strategies for troubleshooting.
Among the more common issues that one encounters with a technique involving extensive mutational perturbations are the low yield and poor oligomeric stability of the protein. This aspect is further exacerbated when working with complex multimeric membrane proteins such as ion channels. It is therefore crucial to optimize these two biochemical aspects before embarking on a widespread mutagenesis. We found that expression of toxic GLIC mutants is better tolerated in C41 and C43 strains of BL21 cells.3,36 Further, lowering the post-induction temperature to 15 – 18 ºC, decreasing the IPTG concentration to 100 μM, and including 5% glycerol during induction seems to help with lowering protein aggregation presumably by slowing the rate of protein expression and reducing the extent of misfolding. Cysteine mutations at certain positions (particularly in the permeation pathway) have been shown to increase the constitutive activity of the channel and these mutants are likely to pose greater hurdles in expression. Use of divalent pore blockers (10 – 25 mM Ba2+) during induction alleviates toxicity and improves cell growth.57 These strategies have proven effective in many cases at enhancing yield, lowering protein aggregation and enhancing oligomeric stability.36,58
Another critical step in SDSL is the efficiency of the labeling process. While surface exposed cysteines should pose no problem in MTSL reactivity (>90% labeling yields), positions where the cysteine side-chains are buried and inaccessible may require higher spin-label concentrations and longer incubation times. Increasing the spin-label concentration to 30-fold molar excess and incubating O/N at 4 ºC helps with improving the labeling efficiency. In addition, it is also important to measure the spectra of the labeled Cys-less template to determine the background contribution. For sites that are poorly labeled (<10%), the background signal overwhelms the overall spectra. While determining the spin-labeling efficiency, note that the accuracy is affected by a number of factors that include sample volume, sample-capillary diameter, positioning of the capillary within the resonator, cavity temperature, and resonator Q value (which is the ratio of the energy stored in it over the energy dissipated out). Care must be taken to maintain these conditions identical between the samples and standard. Further, it should be noted that for immobile sites, where the spectra are intrinsically broad, the accuracy of the labeling measurement drops further. Alternatively, Liquid Chromatography Time of Flight-Electrospray Ionization Mass Spectrometry (LCT-ESI-MS) can be used to directly determine molecular mass and hence labeling efficiencies. However, the MS sensitivity is compromised for samples in detergents and for tightly folded membrane proteins.
Once the mutants are purified as a homogenous population, it is important to ascertain the functionality of the preparation. Patch-clamp measurements of spin-labeled mutants in key regions of the channel will reveal the effect of perturbation on ligand affinity and channel gating. Alternatively, channel properties can be studied in Black Lipid Membranes (BLM)59 or by injecting proteoliposomes into oocytes and measuring currents by two-electrode voltage clamp.59-61 If it is found that the cysteine substitution and the spin-label at certain positions alter ligand-sensitivity or gating kinetics of the channels, experimental conditions (ligand concentration, modulators, lipids composition) can be varied appropriately to stabilize the conformational state under investigation. Further, it is to be noted that EPR measurements are made under steady-state conditions and therefore changes in rapid kinetics of the channel are less likely to impact the structural interpretation.
Clearly, a major advantage of this technique is the ability to study channel dynamics in membranes of defined composition and to directly probe how lipid-mediated effects on dynamics alters channel function. However, a limitation is that some lipid compositions may cause lateral aggregation of the channels on the membrane and therefore the suitability of lipids needs to be ascertained.45 For conditions that do cause aggregation, lowering protein-to-lipid ratio, carrying out reconstitution at lower temperature, and shortening the duration of reconstitution time may help in maintaining the channels monodisperse62 Alternatively, the channels can be reconstituted in nanodiscs, which are nanoscale lipid assemblies surrounded by an annulus of amphipathic membrane scaffold protein (apolipoprotein A1).63 By optimizing the molar ratio of the channel protein, lipid constituents, and membrane scaffolding protein, it is possible to achieve a homogenous and mono-disperse population of single channel units incorporated into individual nanodiscs. This system has several additional advantages in that the nanodiscs are optically clear and provide easy access to both the intracellular and extracellular sides of the membrane.
Finally, at the level of the EPR measurements, one might be faced with CW-EPR spectra that are not straightforward to interpret, especially for positions displaying multicomponent spectra. Such conformational heterogeneity may arise from slowly exchanging conformations of the protein or/and multiple orientations of the spin-label in a given protein conformation. Determining the relative contribution of the two scenarios is not trivial and may require the use of alternate spin-label derivatives, or changing experimental temperature,64 pressure,65 field strengths/microwave frequency,66 or by osmolyte perturbation.67
Furthermore, DEER measurements in liposomes may be limited by a number of factors, including lower sensitivity, higher background contribution resulting from enhanced intermolecular interactions, and a reduction in the measurable distance range (<50Å). In general, for longer distances (<50 Å), there is greater uncertainty in the widths of the distance distribution due to insufficient dipolar evolution times. However, the use of Q band (34 GHz) microwave frequency and labeling with a bifunctional spin label (with reduced intrinsic dynamics) have been shown to alleviate some of these limitations.54 Reconstituting in nanodiscs has also been shown to tremendously improve DEER sensitivity by decreasing background contributions that arises from intermolecular dipolar interactions.15
Despite these limitations, SDSL/EPR studies, particularly in systems with few native cysteines, have proven to be remarkably informative. Future technological advancements are geared toward adapting this powerful approach to study more complex human channels, where mutating native cysteines may not be feasible. In this regard, development of alternate labeling strategies such as those based on site-specific incorporation of unnatural amino acids,68 or synthesis of labels that are targeted towards other amino acids,69 appear to hold great promise.
The authors have nothing to disclose.
We are very grateful to the current and former members of the Chakrapani lab for critical reading and comments on the manuscript. This work was supported by the National Institutes of Health grant (1R01GM108921) and the American Heart Association (NCRP Scientist Development Grant 12SDG12070069) and to SC.
Site-Directed Mutagenesis and Cys mutations | |||
10x PfuUltra HF reaction buffer | Agilent Technologies | 600380-52 | |
dNTPS | New England BioLabs Inc | N0447L | 10mM each dNTP |
pfu Ultra DNA polymerase | Agilent Technologies | 600380-51 | 2.5 U/ul |
DPNI | New England BioLabs Inc | R0176S | 20,000 U/ml |
XL10 GOLD | Agilent Technologies | 200314 | |
SOC media | New England BioLabs Inc | B9020S | |
Kanamycin | Fisher Scientfic | BP905 | |
LB media | Invitrogen | 127957084 | |
Miniprep kit | QIAGEN | 27106 | |
C43 competent cells | Lucigen | 60446 | |
Expression and Purification | |||
Glucose | Fisher Scientfic | D16 | |
Tryptone | Fisher Bioreagents | BP1421-500 | |
Yeast extract | Amresco | J850 | |
Glycerol | Fisher Bioreagents | BP229 | |
K2HPO4 | Amresco | 0705 | |
KH2PO4 | Amresco | 0781 | |
IPTG (isopropyl-thio-β-galactoside) | Gold Biotechnology | I2481C25 | |
Trizma Base | Sigma Life Science | T1503 | |
NaCl | Sigma-Aldrich | S7653 | |
DNase I | Sigma Life Science | DN25 | |
PMSF | Amresco | M145 | |
Leupeptine | Amresco | J580 | |
Pepstatin | Amresco | J583 | |
DDM (n-Docecyl-β-D-Maltopyranoside) | Anatrace | D310S | |
Amylose resin | New England BioLabs Inc | E8021L | |
TCEP | Amresco | K831 | |
EDTA | Fisher Scientfic | BP118 | |
Maltose | Acros Organics | 329915000 | |
Superdex 200GL | GE Healthcare | 17-5175-01 | |
Empty polypropylene Chromatography column | BioRad | 731-1550 | |
Site-Directed Spin Labeling | |||
MTSL (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl) Methanethiosulfonate | Toronto Reaserch chemicals Inc | O873900 | |
(1-acetoxy-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate | Toronto Reaserch chemicals Inc | A167900 | |
DMSO | J.T. Baker | 9224-01 | |
Reconstitution | |||
Asolectin lipid | Avanti polar lipids Inc | 541602C | |
Biobeads (Polystyrine beads) | Bio Rad | 152-3920 | |
Methanol | Fisher chemicals | A413 | |
FRET | |||
Fluorescein-maleimide | ThermoFisher Scientific | F-150 | |
Tetramethylrhodamine-maleimide | ThermoFisher Scientific | T-6027 | |
POPC | Avanti polar lipids Inc | 850457C | |
POPG | Avanti polar lipids Inc | 840457C | |
E.Coli polar lipid extract | Avanti polar lipids Inc | 100600C | |
HEPES | Sigma Life Science | H3375 | |
EPR measurement | |||
TPX plastic capillaries | Bruker | ER221 | |
EDDA (Ethylenediamine-N, N'-diacetic acid) | Aldrich | 158186 | |
Ni(OH)2 | Aldrich | 283622 |